Reheating and geometrical destabilisation in String Inflation

Michele Cicoli

Bologna Univ. and INFN PPC2019, 22 July 2019

ALMA MATER STUDIORUM Università di Bologna

Based on: MC, Guidetti, Pedro, Vacca, 1807.03818 MC, Piovano, 1809.01159 MC, Guidetti, Pedro, 1903.01497

Challenges for string inflation

- Conditions for string inflation:
 - (i) inflaton is a pseudo NG boson to control quantum corrections
 - (ii) moduli stabilisation to control all directions and fix energy scales

(iii) CY embedding to check theoretical consistency

(iv) understand post-inflationary cosmology to make trustable predictions

- n_s and r depend on:
 - i) N_e which depends on post-inflation: reheating: T_{re} ? w_{re} ? moduli domination: N_{mod} ? $N_e + \frac{1}{4}N_{mod} + \frac{1}{4}(1 - 3w_{re})N_{re} \approx 57 + \frac{1}{4}\ln r + \frac{1}{4}\ln\left(\frac{\rho_*}{\rho_{end}}\right)$

ii) fix n_s by matching observations and then predict r

BUT Planck value of n_s depends on priors:

$\Delta N_{eff} = 0$	\longrightarrow	$n_s = 0.965 \pm 0.004$	[Planck coll. 2018]
$\Delta N_{eff} = 0.39$		$n_s = 0.983 \pm 0.006$	[Planck coll. 2015]

can get different r! \longrightarrow compute dark radiation ΔN_{eff} ultra-l

ultra-light axions?

Moduli stabilisation

• Swiss-cheese CY volume

$$\mathcal{V} = \frac{1}{6} \sum_{i,j,k=1}^{N_{\text{large}}} k_{ijk} t_i t_j t_k - \frac{1}{6} \sum_{s=1}^{N_{\text{small}}} k_{sss} t_s^3 \qquad \qquad N_{\text{large}} + N_{\text{small}} = h^{1,1}$$

• EFT coordinates: Kahler moduli

$$T_i = \tau_i + \mathbf{i} \,\mathcal{G}_i \qquad \qquad \tau_i = \frac{\partial \mathcal{V}}{\partial t_i}$$

• Leading order: α' + non-perturbative effects

$$K = -2\ln\left(\mathcal{V} + \frac{\xi}{2g_s^{3/2}}\right) \qquad W = W_0 + \sum_{s=1}^{N_{\text{small}}} A_s \ e^{-a_s T_s}$$

• LVS models: fix
$$\mathcal{V} + N_{small}$$
 del Pezzo moduli [MC, Conlon, Quevedo]
 $\mathcal{V} \simeq e^{a_s \tau_s} \gg 1$ $\tau_s \simeq g_s^{-1} > 1$ $\forall s = 1, ..., N_{small}$ \longrightarrow $N_{flat} = h^{1,1} - N_{small} - 1$ flat directions!
+ $N_{flat} + 1$ massless axions!
Good inflaton candidates:
1) Inflaton naturally lighter than H

2) Flatness protected by rescaling shift symmetry

. . .

Explicit CY models

• Need CY 3-folds with (from Kreuzer-Skarke list):

$$N_{\text{small}} \ge 1$$
 $N_{\text{flat}} = h^{1,1} - N_{\text{small}} - 1 \ge 1$ $h^{1,1} \ge N_{\text{small}} + 2 \ge 3$

- $h^{1,1} = 3$: brane set-up + moduli stabilisation + inflation + no chirality
- CY volume with 2 large moduli (K3 fibre over a P1 base):

$$\mathcal{V} = t_1 t_2^2 + t_3^3 = \sqrt{\tau_1} \tau_2 - \tau_3^{3/2}$$

• τ_1 is the inflaton with V constant

2 ultra-light axions ϑ_1 and ϑ_2

[MC,Ciupke,Diaz,Guidetti,Muia,Shukla]

[MC,Muia,Shukla]

- $h^{1,1} = 4$: brane set-up + moduli stabilisation + inflation + chirality
- CY volume with 3 large moduli (3 K3 fibrations):

$$\mathcal{V} = t_1 t_2 \tilde{t}_2 + t_3^3 = \sqrt{\tau_1 \tau_2 \tilde{\tau}_2} - \tau_3^{3/2}$$

- Visible sector on D7s wrapping τ_1 , τ_2 and $\tilde{\tau}_2$
- Turn on gauge fluxes \longrightarrow FI-term = 0 fixes $\tau_2 \sim \tilde{\tau}_2$ \longrightarrow reduce to $h^{1,1} = 3$ case

 $V_{\rm m} = m^2 |q|$

dS from hidden sector F-terms: background fluxes + gauge fluxes (T-branes)

Fibre Inflation

Potential for canonical inflaton shifted from minimum:

$$V_{\rm inf} = V_0 \left(3 - R - 4 \ e^{-\varphi/\sqrt{3}} + e^{-4\varphi/\sqrt{3}} + R \ e^{2\varphi/\sqrt{3}} \right)$$

[MC, Burgess, Quevedo] [MC,Ciupke, de Alwis, Muia]

$$V_0 \simeq \frac{M_p^4}{\mathcal{V}^{10/3}} \qquad R \simeq \left(\frac{C_1 C_2}{C_3}\right)^2 \frac{g_s^4}{18} \le 10^{-5} \qquad g_s \le 0.1 \qquad C_i \sim O(1)$$

Assume no instability of ultra-light axions

 α -attractor (E-model) with $\left[\Delta \varphi \simeq 5M_p\right]$

BUT predictions depend on reheating $n_s = n_s(\varphi_*, R) = n_s(N_e, R) = n_s(w_{\rm rh}, T_{\rm rh}, R)$ $r = r(\varphi_*, R) = r(w_{\rm rh}, T_{\rm rh}, R)$

Cosmological predictions

Geometrical bounds

$$\frac{\Delta\phi}{M_p} \le c \ln \mathcal{V} \qquad c \sim O(1)$$

• Scan of $\Delta \phi$ for all toric LVS vacua with $h^{1,1} = 3$, $V = 10^5$ and $g_s = 0.1$

i) $\Delta \phi > M_p$ only for examples we need for inflation (K3 fibrations)!

ii) agreement with swampland distance conjecture

[MC, Ciupke, Mayrhofer, Shukla]

Bound on tensor modes

[MC, Ciupke, Mayrhofer, Shukla]

• Generic LVS inflationary model

$$V \simeq V_0 \left(1 - c_1 e^{-c_2 \phi} \right) \longrightarrow \epsilon = \frac{1}{2} \left(\frac{V'}{V} \right)^2 \simeq \frac{1}{2} c_1^2 c_2^2 e^{-2c_2 \phi}$$

• For $\epsilon(\phi_{\mathrm{end}}) \simeq 1$ and $r(\phi_*) = 16 \epsilon(\phi_*)$

$$N_e = \int_{\phi_{\text{end}}}^{\phi_*} \sqrt{\frac{8}{r(\phi)}} \, \mathrm{d}\phi \qquad \longrightarrow \qquad \frac{\Delta\phi}{M_p} \simeq \frac{N_e}{2} \sqrt{\frac{r(\phi_*)}{2}} \ln\left(\frac{4}{\sqrt{r(\phi_*)}}\right)$$

• Combine with $\Delta \phi/M_p \le c \ln V$ for $N_e = 50$

Reheating

- End of inflation: inefficient particle production at preheating [Antusch,Cefalà,Krippendorf,Muia,Orani,Quevedo]
 - Inflaton energy transferred to SM via perturbative decay

SM and dark radiation

- Where is the SM?
- Ultra-light bulk axions from inflaton decay contribute to ΔN_{eff}
- Observational constraint: $N_{\rm eff} = 2.99 \pm 0.17$ Planck + galaxy BAO [Planck coll. 2018] $N_{\text{aff}} = 3.41 \pm 0.22$ Planck + galaxy BAO + LyaF BAO + HST [Riess et al 2016] Inflaton ϕ SM dof Bulk axions $\Delta N_{eff} > 0$ Decay rates into bulk axions [Angus] [Hebecker, Mangat, Rompineve, Witkowski] $\begin{cases} \Gamma_{\Phi \to a_1 a_1} = \frac{1}{24\pi} \frac{m_{\Phi}^2}{M_{P}^2} \\ \Gamma_{\Phi \to a_2 a_2} = \frac{1}{\Omega c_-} \frac{m_{\Phi}^3}{M^2} \end{cases} \longrightarrow \qquad \Gamma_{\Phi \to \text{hid}} = c_{\text{hid}} \ \Gamma_0$ $\Gamma_0 = \frac{1}{48\pi} \frac{m_{\Phi}^3}{M^2} \qquad c_{\text{hid}} = \frac{5}{2}$ SM on D3s at a singularity _____ sequestering _____ loop suppressed decay rates $\Gamma_{\Phi \to visible} \simeq \left(\frac{\alpha_{SM}}{4\pi}\right)^2 \Gamma_0 \longrightarrow \Delta N_{eff} \sim \left(\frac{4\pi}{\alpha_{SM}}\right)^2 \sim 10^4$

Dark radiation overproduction!

SM on D7s wrapping inflaton cycle to increase branching ratio into visible dof

Reheating temperature

[MC, Piovano]

• SM on D7s wrapping τ_1 and $\tau_2 \longrightarrow desequestering$

$$M_{\rm soft} \simeq m_{3/2} \simeq 5 \cdot 10^{15} \,{\rm GeV} \gg m_{\phi} \simeq 5 \cdot 10^{13} \,{\rm GeV}$$

inflaton cannot decay to SUSY particles

Leading inflaton decay into gauge bosons

$$\Gamma_{\Phi \to AA} = 12\gamma^{2}\Gamma_{0} \qquad \gamma = \frac{\langle \tau_{1} \rangle}{\langle \tau_{1} \rangle - h(F)g_{s}^{-1}}$$
$$\longrightarrow \qquad \Gamma_{\Phi \to vis} = c_{vis} \ \Gamma_{0} \qquad c_{vis} = 12 \ \gamma^{2}$$

• Reheat temperature:

$$T_{\rm rh} \simeq 0.12 \ \gamma \ m_{\Phi} \sqrt{\frac{m_{\Phi}}{M_p}} \simeq 3\gamma \cdot 10^{10} \ {\rm GeV} \simeq 10^{10} \ {\rm GeV} \qquad \longrightarrow \qquad g_*(T_{\rm rh}) = 106.5$$

• Oscillating scalar behaves as matter $\longrightarrow w_{rh} \simeq 0 \longrightarrow N_e \simeq 52 + \frac{1}{3} \ln \gamma \simeq 52$

$$n_s = n_s(w_{\rm rh}, T_{\rm rh}, R) \rightarrow n_s = n_s(R)$$

 $r = r(w_{\rm rh}, T_{\rm rh}, R) \rightarrow r = r(R)$

Dark radiation and tensors

- Fix R in n_s(R) by matching Planck after computing ∆N_{eff}
 - Predict tensor modes from r(R)
- Dark radiation prediction almost insensitive to Higgs coupling z:

$$\Delta N_{\rm eff} = \frac{43}{7} \frac{\Gamma_{\Phi \to \rm hid}}{\Gamma_{\Phi \to \rm vis}} \left(\frac{g_*(T_{\rm dec})}{g_*(T_{\rm rh})} \right)^{1/3} \simeq \frac{0.6}{\gamma^2} \qquad \qquad \gamma = \frac{\langle \tau_1 \rangle}{\langle \tau_1 \rangle - h(F) g_s^{-1}}$$

• Expand F:

[MC, Piovano]

Fluxless case

• F = 0 case:
$$n_2 = 0$$

 $\rightarrow \gamma = 1$ $\langle \tau_1 \rangle = \frac{\alpha_{\text{vis}}^{-1}}{2} = 12.5$ $\Delta N_{\text{eff}} \simeq 0.6$ prior for Planck

Cosmological prediction:

need to reproduce
$$n_s = n_s(R) \simeq 0.99$$

horizon exit in steepening region with $R = R_0$
 $r = r(R) \simeq 0.01$
 $\tau_1 = 12.5$ small enough to get $N_e = 52$

with $\Delta \phi \leq \ln v$ for $v = 10^3$

Fluxed case

[MC, Piovano]

Geometrical destabilisation?

[MC,Guidetti,Pedro,Vacca]

• Generic non-linear sigma model

$$\mathcal{L}/\sqrt{|g|} = \frac{1}{2}\gamma_{ij}(\phi_i)\partial_{\mu}\phi_i\partial^{\mu}\phi_j - V(\phi_i)$$

• Effective mass-squared of isocurvature perturbations for i=1,2:

$$m_{\rm eff}^2 = V_{\perp\perp} - \Gamma_{\perp\perp}^i V_i + \left(\varepsilon R + 3\eta_{\perp}^2\right) H^2$$

field-space Ricci scalar

turning-rate of trajectory

 $\eta_{\perp} = \frac{V_{\perp}}{H \left| \dot{\phi} \right|} \qquad \left| \dot{\phi} \right| = \sqrt{\gamma_{ij} \dot{\phi}_i \dot{\phi}_j}$

• For R < 0 and geodesic motion with $\eta_{\perp} = 0$:

$$m_{\rm eff}^2 = V_{\perp\perp} - \Gamma_{\perp\perp}^i V_i - \varepsilon \left| R \right| H^2$$

geometrical destabilisation during inflation? (if $m_{eff}^2 < 0$)

• Instability even for heavy fields with $V_{\perp \perp} >> H^2$ if $|R| = M_p / M >> 1$ even if $\varepsilon << 1$

[Renaux-Petel,Turzinsky]

premature end of inflation? Perturbation theory breakdown?

 No pathology since the instability is classical background solution: attractor → repulsor

• new attractor solution where $m_{\rm eff}^2 > 0$

Unstable ultra-light fields?

• Effective mass-squared of isocurvature perturbations with R < 0 and η_{\perp} = 0:

$$m_{\rm eff}^2 = V_{\perp \perp} - \Gamma_{\perp \perp}^i V_i - \varepsilon |R| H^2$$
 destabilisation during inflation?

• In strings/SUGRA generically $R \sim O(1)$ and R < 0 since

$$K = -3\ln\left(T + \overline{T}\right) \qquad \longrightarrow \qquad R = -8/3$$

1) Non shift-symmetric heavy fields

$$V_{\perp\perp} \ge H^2 \gg \varepsilon |R| H^2 \sim \varepsilon H^2 \longrightarrow m_{\text{eff}}^2 > 0$$
 [MC,Guidetti,Pedro,Vacca]

2) Shift-symmetric ultra-light fields with $H^2 \gg V_{\perp \perp} \simeq 0$

$$m_{\rm eff}^2 = -\Gamma_{\perp\perp}^i V_i - \varepsilon \left| R \right| H^2 \qquad \longrightarrow \qquad m_{\rm eff}^2 < 0 \quad \text{if} \quad \Gamma_{\perp\perp}^i V_i > 0$$

• In Fibre Inflation $\eta_{\perp} = 0$

i) Heavy fields are stable

ii) Ultra-light fields: ϑ_2 axion is stable while ϑ_1 axion can be unstable! [MC,Guidetti,Pedro]

- Breakdown of perturbation theory? Kick along ϑ_1 and backreaction from $\eta_{\perp} \neq 0$?
- Potential phenomenological implications: large non-Gauss. localised in k-space? PBHs? GWs at interferometric scales?

Unstable ultra-light fields?

[MC,Guidetti,Pedro]

$$m_{\rm eff}^2 = -\Gamma_{22}^1 V_1 + \left(\varepsilon R + 3\eta_\perp^2\right) H^2$$

2 cases:

i) f decays exponentially with N_e
$$\rightarrow \dot{\phi}_2 \neq 0 \rightarrow \eta_{\perp} \neq 0$$

 $\rightarrow m_{\text{eff}}^2 > 0$ e.g. quintessence potentials
ii) f does not decay exponentially with N_e $\dot{\phi}_2 \rightarrow 0 \rightarrow \eta_{\perp} \simeq 0$
 $m_{\text{eff}}^2 = -\Gamma_{22}^1 V_1 + \varepsilon R H^2 = -\left(3\frac{f_1}{f} + \sqrt{2\varepsilon}\frac{f_{11}}{f}\right)\sqrt{2\varepsilon}H^2$
e.g. Fibre Inflation

R negative and constant:

$$R = -2\frac{f_{11}}{f} = \text{const} \qquad \Leftrightarrow \qquad f(\phi_1) = A_+ \ e^{\lambda\phi_1} + A_- \ e^{-\lambda\phi_1} \quad \text{with} \quad \lambda = \sqrt{\frac{|R|}{2}}$$

Unstable ultra-light fields?

[MC,Guidetti,Pedro]

Isocurvature mass-squared simplifies to:

$$m_{\text{eff}}^2 \simeq_{\varepsilon \ll 1} - 3 \frac{f_1}{f} \sqrt{2\varepsilon} H^2 = \pm \lambda V_1$$

- Stability of ultra-light fields determined by the sign of V₁
- Fibre inflation:
 - i) ϑ_1 axion $A_{+} = 0$ \longrightarrow $m_{\text{eff}, \vartheta_1}^2 \simeq -\lambda V_1$
 - ii) ϑ_2 axion $A_{-}=0$ \longrightarrow $m_{eff,\vartheta_2}^2 \simeq +\lambda V_1$
- 2 cases:

i) $V_1 > 0$ (R-L inflation) \longrightarrow ϑ_1 axion unstable, ϑ_2 axion stable [MC,Burgess,Quevedo] ii) $V_1 < 0$ (L-R inflation) \longrightarrow ϑ_1 axion stable, ϑ_2 axion unstable [Broy,Ciupke,Pedro,Westphal]

One axion is always potentially unstable!

Stable ultra-light fields for quintessence

[MC,Guidetti,Pedro]

Potential and kinetic function:

$$V = V_0 \ e^{-k_2 \phi_1} \qquad \qquad f = f_0 \ e^{-k_1 \phi_1}$$

• Solution of EOM gives

Stable ultra-light fields for quintessence

[MC,Guidetti,Pedro]

Stable ultra-light fields for quintessence

[MC,Guidetti,Pedro]

Ultra-light axions in Fibre Inflation

 $f^{2}(\phi_{1}) = A_{-}^{2} e^{-4k\phi_{1}}$ $f^{2}(\phi_{1}) = A_{+}^{2} e^{2k\phi_{1}}$

[MC,Guidetti,Pedro]

Potential of Fibre Inflation:

 $V \simeq V_0 \left(3 - 4 e^{-k\phi_1} \right)$

$$\phi_1(N_e) - \phi_1(0) \simeq \frac{1}{k} \ln\left(1 - \frac{4N_e}{9}e^{-k\phi_1(0)}\right)$$

Kinetic function:

<mark>.9</mark>₂ axion

 9_1 axion

Geodesic motion:

$$\dot{\vartheta}_i(N_e) \simeq \dot{\vartheta}_i(0) \left(\frac{f(0)}{f(N_e)}\right)^2 e^{-3N_e} \simeq \dot{\vartheta}_i(0) \left(\frac{f(0)}{A_{\pm}}\right)^2 e^{-3N_e \pm ck\phi_1(N_e)} \to 0 \qquad \forall i = 1, 2 \quad \longrightarrow \quad \eta_{\perp} = 0$$

Stable massive axions?

[MC,Guidetti,Pedro]

- Avoid axion instability by turning on a mass term
- Focus on ϑ_1 axion with $f^2(\phi_1) = A_-^2 e^{-4k\phi_1}$
- Non-perturbative effects break axionic shift-symmetry

$$W = W_0 + A_3 e^{-a_3 T_3} + A_1 e^{-a_1 T_1}$$

 $\longrightarrow V(\mathcal{G}_1) = \Lambda \cos(a_1 \mathcal{G}_1) \qquad \Lambda = \Lambda_0(\langle \tau_1 \rangle) e^{-a_1 \langle \tau_1 \rangle} e^{2\phi_1 / \sqrt{3}} \qquad \mathbf{C}$

double exponential suppression and ϕ dependence!

$$m_{\text{eff}}^{2} = \frac{V_{\mathcal{G}_{1}\mathcal{G}_{1}}}{f^{2}} + \frac{f_{\phi_{1}}}{f}V_{\phi_{1}} + 3\frac{V_{\mathcal{G}_{1}}^{2}}{\dot{\phi}_{1}^{2}f^{2}} \approx -\lambda \left|V_{\phi_{1}}\right| \left[1 - \frac{a_{1}^{2}}{\lambda f^{2}\sqrt{2\varepsilon}} \left(\frac{9\delta^{2}}{2\varepsilon}\sin^{2}(a_{1}\mathcal{G}_{1}) - \delta\cos(a_{1}\mathcal{G}_{1})\right)\right]\right]$$

2 options:
$$\delta = \frac{\Lambda(\phi_{1})}{V(\phi_{1})}$$

i) keep hierarchy and trust inflationary model:

 $\delta \ll 1 \longrightarrow m_{\text{eff}}^2 \simeq -\lambda |V_{\phi}| < 0$ massive axions still unstable! ii) make $m_{\text{eff}}^2 > 0$ for $\delta \sim O(1)$ the dynamics changes and becomes 2-field!

Unstable massive axions

Conclusions

- 1) Fibre Inflation models: natural inflationary directions
- 2) Moduli stabilisation: non-perturbative + α ' effects + string loops
- 3) Effective symmetry: non-compact rescalings
- 4) Starobinsky-like inflation with large tensors: $0.005 \le r \le 0.01$
- 5) Global CY embedding: $h^{1,1} = 3$ case without chirality + chirality for $h^{1,1} \ge 4$
- 6) Compact inflaton field space with $\Delta \phi / M_p \le c \ln V$ with $\Delta \phi > M_p$ only for K3-fibrations
- 7) General prediction: $r \le 0.01$ \longrightarrow agreement with swampland distance conjecture
- 8) Reheating: visible sector on D7s wrapping inflaton cycle to avoid large ΔN_{eff}
- 9) $N_e \approx 52$ and $T_{rh} \approx 10^{10} \text{ GeV}$

fluxed D7: $\Delta N_{eff} \approx 0$ \longrightarrow $n_s \approx 0.965$ and $r \approx 0.007$ fluxless D7: $\Delta N_{eff} \approx 0.6$ \longrightarrow $n_s \approx 0.99$ and $r \approx 0.01$

- 10) 2 ultra-light axions can be dark radiation but also dark matter, curvaton or quintessence
- 11) Are ultra-light fields stable during inflation? Phenomenological implications?