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Disclaimer….

• This lecture is meant to be an 
introductory class with some 
fundamental concepts. 
• This subject is very broad and 

there are several topics I will 
not cover because of time…
• Hopefully, this is a seed for 

future lectures on these topics 
that could help many 
students…

12/5/22 Andrés Flórez



FERMIONS

Quarks Leptons

1ra 2da 3ra

Standard Model

u c t

d s b

e 𝝁 𝝉

𝝂𝒆 𝝂𝝉𝝂𝝁

BOSONS

𝜸

𝑾$

𝑾%

𝒁𝟎

𝑯𝟎

HIGGS

𝟏
𝟐

+
𝟐
𝟑

−
𝟏
𝟑

−𝟏

𝟎

+
𝟐
𝟑 +

𝟐
𝟑

−
𝟏
𝟑

−
𝟏
𝟑

−𝟏 −𝟏

𝟎 𝟎

𝟏
𝟐

𝟏
𝟐

𝟏
𝟐

𝟏
𝟐

𝟏
𝟐

𝟏
𝟐

𝟏
𝟐

𝟏
𝟐

𝟏
𝟐

𝟏
𝟐

𝟏
𝟐

𝟏

𝟏

𝟏

𝟏

𝟎

−𝟏

−𝟏

𝟎

𝟎

vFermions compose matter 
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fundamental interactions.
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(generations), that differ 
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different types of particles.
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The Large Hadron Collider (LHC)
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The LHC
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Observables

e ! " #

0j nj 0b nb

$%&'(( )% *% +% ………….

X"number"of"leptons"and"
or"photons

Veto"jets"(j)"and/or"b7jets"(b)"
and/or"select"nj"or"nb"jets

Use"some"observables"based"
on"the"topology"of"the"event
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Observables
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Some Fundamental Concepts

• Event: 
• It is understood as the result or outcome after a fundamental interaction 

among particles takes place.
• For example, we consider an event as the result after the interaction between 

two proton beams at the LHC or after the collision of heavy ion beams, or 
between a beam of particles and a fix target, etc.

• Cross section:
• Is the probability of production of a specific process. This quantity is 

related with the level of the interaction between the beam and the 
target, or between two beams, and it depends on the energy of 
collisions.
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Proton-Proton Collisions
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Toy Example
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Event 1 Event 2 Event 3

Event 4 Event 5 Event 6

Event 7 Event 8 Event 9

Event pT(𝝁)1 𝜼(𝝁)1 𝝓(𝝁)1 pT(𝝁) 2 𝜼(𝝁) 2 𝝓(𝝁) 2

1 20.5 -2.1 3.1 37.3 2.3 -3.2

2 25.2 1.8 2.1 32.6 -1.3 -2.2

3 10.3 0.1 3.3 44.6 2.3 -3.0

4 30.5 0.3 -1.1 39.3 -2.2 1.5

5 40.8 -1.5 2.5 38.0 1.9 -2.0

6 35.0 -1.4 -1.4 45.1 0.0 1.2

7 42.1 2.2 2.8 22.5 -1.3 -2.8

8 44.2 0.7 2.2 35.8 1.9 -1.2

9 27.4 0.8 -1.4 33.3 -2.3 1.2

Select events with at least two muons…….



𝒁 → 𝝁!𝝁" Reconstructed mass
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𝑬𝒙𝒂𝒎𝒑𝒍𝒆: MC
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Expected number of events in MC
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𝑵𝒊 = 𝑳 × 𝝐𝒊 × 𝝈𝒊

𝑛.𝑛/𝑓𝐹(𝜃, 𝜙)
𝜎.𝜎/

𝐸𝑣𝑒𝑛𝑡𝑠 𝑎𝑓𝑡𝑒𝑟 𝑠𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠
𝐸𝑣𝑒𝑛𝑡𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠

Probability of 
Production

𝜖! =
"'())
"*+*

⟹ 𝛿𝜖!= #,
"*+*

1 − 𝜖! ⟶ Binomial error….

Statistical errors are quite important, and they can be quantified 
using different approaches….we will get back to this later… 
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Expected background processes from the SM

Expected number of signal events

Observed data

Data over BKG prediction



Understanding the data…

• Note that in general we have a signal model that we want to test 
experimentally.
• We apply some event selection criteria (filters or cuts), based on the 

characteristics of the hypothetical signal, in order maximize the 
probability to observe the process of interest above the background (BKG) 
(noise).
• Note that after we apply our filters to the actual data, we will have some 

events passing our selections.
• The main questions are: 

• What is the composition of these events?
• Is the BKG prediction consistent with the observed data?
• Do we have an excess of events above the BKG prediction, consistent with the signal 

hypothesis? If so, how significant, based upon the statistical and systematic errors?
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Understanding 
the data…
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Probability Distributions

• We are concerned about estimating 
the probability to detect signal events 
inside data, knowing that the data is 
composed of events from different 
background processes and possibly 
signal.
• Suppose we are performing 

measurements of a random 
observable X.
• Normalization:
• Moments:

12/5/22 Andrés Flórez

0
$'

%'
𝑃 𝑥 = 1

𝛼( = 0𝑥(𝑃 𝑥 𝑑𝑥

Probability Density Function (PDF)

60 70 80 90 100 110 120
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3-10´

P(
X)

h1
Entries           1e+08

Mean       90

Std Dev         5

 

0X



60 70 80 90 100 110 120
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3-10´

P(
X)

h1
Entries           1e+08

Mean       90

Std Dev         5

 

0X

Probability Distributions

• The mean is the average result of many 
measurements

• The variance is the width of the PDF about 
the mean
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Probability Density Function (PDF)

𝜇 → 𝑀𝑒𝑎𝑛

𝜎 → Standard Deviation
𝜇 ≡ 0𝑥 𝑃 𝑥 𝑑𝑥 = 𝑥

Var(x) ≡ ∫ 𝑥 − 𝜇 ) 𝑃 𝑥 𝑑𝑥 = 𝜎) = 𝑥) − 𝜇)

Width

0𝑥)𝑃 𝑥 𝑑𝑥Mean of squares

We do not know the PDF, we just have several 
measurements distributed according to a PDF
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Probability Distributions

• In general, we do not know the exact shape of the PDF.
• What we have experimentally, is a set of measurements that we use to build the PDF. 
• Note that the accuracy of the shape of the PDF will be determined by the number and 

quality of the measurements.
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Population vs Sample

• Two important concepts:
• Population: The entire set of data from which we want to perform a statistical study.
• Sample: Is a subset of the population that contains some specific characteristics. 
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Variance..

• Variance of the sample: 

• In a perfect world with infinite statics, where we know the true PDF, how are related 
the sample variance, 𝑺𝟐,  and the true variance 𝝈𝟐?
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Variance..

• Note that the sample variance is &)%
&

smaller than the true variance.
• Also, note that if “n” is very large 𝑆$ → 𝜎$.
• It is easy to see that the sample mean is the best unbiased estimate of the true mean:

𝑥̅ =
1
𝑛
4

!
𝑥!

• Naturally, we must ask, what is the error on the sample mean?

𝝈*𝒙𝟐 = 6𝒙 − 𝝁 𝟐 =
𝟏
𝒏
4
𝒊

𝒙𝒊 − 𝝁𝟐
𝟐

⟹
𝒙𝟐 − 𝝁𝟐

𝒏
=
𝝈𝟐

𝒏
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Since 𝝈𝟐 is the uncertainty on a single measurement, it means that the uncertainty on the mean is a factor 
𝒏 smaller! Therefore, if our number of independent measurements increase, we reduce our uncertainty 

accordingly. Finally, note that this is a general result, independent of the distribution (PDF).  

Now, lets see some popular distributions



Normal Distribution (Gaussian)
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Lorentzian

12/5/22 Andrés Flórez

0 0.5 1 1.5 2 2.5 3
Distribution X

0

10

20

30

40

50

2
G2

1 + 2)
0

(x -x

G2
1

 p
1f(x) = 

 
 widthG

 mean0x

Lorentzian



Poissonian
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N!
Nµµ-ef(x) = 



Landau
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Probability
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• We understand probability as 
the area under the curve in a 
distribution, with respect to the 
total area.

• We interpret it as the feasibility 
of a process to occur, given a 
known PDF. ocurra en ese 
rango.



Common Probability Distributions

• Binomial: Describes a random process with two possible outcomes.
• p → probability of one of the outcomes and (1-p) → probability of the second 

outcome.
• If we repeat the process a given number of times, then we obtain a 

distribution of outcomes.

• Poissonian: Discrete and random process with a fixed mean.
• Gaussian: continuous limit, obtained with high statistics (see next)
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Let's define some important concepts in order to understand the use of 
probabilities in particle physics



Important concepts
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• n : Total number of events 
collected. 
• 𝑛;: Total number of events in bin 

“i”.
• k : Total number of events passing 

some selection criteria.  
• 𝑘;: Total number of events passing 

some selection criteria in bin “i”.

• 𝜖 = <
=
→ efficiency
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Binomial Statistics

• We have “k” positive outcomes (success) out of “n” total independent 
measurements. 
• The probability of success depends on the efficiency, 𝜖

𝑃 𝑘; 𝑛, 𝜖 =
𝑛!

𝑘! 𝑛 − 𝑘 !
𝜖< 1 − 𝜖 =><

• For a binomially distributed case, the estimator is 𝑘: n𝜖
• Variance: 

𝜎<? = 𝑘 − 𝜇 ? = 𝑘? − 𝜇?

𝑘? = ∑𝑘?𝑃 𝑘; 𝑛, 𝜖 = ∑<@A= 𝑘? =!
<! =>< !

𝜖< 1 − 𝜖 =><
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Binomial Statistics
• Variance: 

𝑘? = 𝑛𝜖 ∑<@C= 𝑘 𝜖<>C 1 − 𝜖 =>< =>C !
<>C ! =>< !

𝑘? = 𝑛𝜖 ∑<ʹ@A
=>C (𝑘ʹ+ 1)𝜖<ʹ 1 − 𝜖 =>C><ʹ =>C !

=>C><ʹ !
𝑘? = n𝜖 ∑<ʹ@A

=>C 𝑃 𝑘; 𝑛 − 1, 𝜖 + n𝜖 ∑<ʹ@A
=>C 𝑘𝑃 𝑘; 𝑛 − 1, 𝜖

𝑘? = n𝜖 + n𝜖 x 𝜖(𝑛 − 1)= n𝜖(n𝜖 − 𝜖 + 1)
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𝜎<? = n𝜖(n𝜖 − 𝜖 + 1) - (𝑛𝜖)? = n𝜖 (1 - 𝜖)

𝜎<? = n𝜖 (1 - 𝜖)



Binomial Statistics
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Binomial Statistics: Efficiency

• Now, imagine we have a MC signal sample for a given theoretical 
model and we want to determine the efficiency of applying to a 
criterion in order to reduce the BKG rate. 
• Then, we have 𝑁DEFF events out of 𝑁GHG total, passing the criterion. 

• Therefore, as shown before, the efficiency is 𝜖I= 
J!"##
J$%$

• Note that now, our estimator is 𝜖I. 
• Therefore
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𝑃 𝑁H.II; 𝑁JKJ =
𝑁JKJ!

𝑁H.II! 𝑁JKJ −𝑁H.II !
𝜖L
M!"##(1 − 𝜖L)M$%$NM!"##



Binomial Statistics: Efficiency

• Note that for this case, the best estimate of the efficiency is clearly 
the efficiency itself! 

• So, 𝜎I? = 𝜖I? = 𝑁GHG𝜖I 1 − 𝜖I ×
C

J$%$
& = K'(C > K')

J$%$
• For example, if we have 80 events passing out of 100 events:

ϵL = 0.80 ± 0.04
• Note that we performed the calculation considering a single 

measurement for 𝜖I. Imagine we run the simulation of the signal 
process many times, varying randomly the initial seed, in order to 
obtain a more accurate measurement of the efficiency. 
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Binomial Statistics: Efficiency

• With this in mind:

𝜖I =
𝑁DEFF
𝑁GHG

=
𝑁GHG𝜖
𝑁GHG

= 𝜖

• And the variance? Note that for a single measurement: 

𝜎I? =
𝜖I(1 − 𝜖I)

𝑁GHG
=
𝑁DEFF(𝑁GHG −𝑁DEFF)

𝑁GHGM

• Therefore

𝜎I? = J$%$ J!"##
J$%$
( − J!"##&

J$%$
( = J$%$

& K
J$%$
( − J$%$

& K&>J$%$K&NJ$%$K
J$%$
( = J$%$NC

J$%$
𝜎?
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See slide 33



Summary

• Understanding some fundamental statistical 
concepts is fundamental is particles physics: 
mean, variance, PDF….
• Some PDF are widely used in our field, and many 

others, and it is important to understand their 
similarities and differences: Gaussian, Poissonian, 
Lorentzian, etc.
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Thank you!


