VII UNIANDES PARTICLE PHYSICS SCHOOL

Physics objects reconstruction at the LHC

> C. Avila, UNIANDES

Physics Object Reconstrution at the LHC

TALK OUTLINE

- **1. Main LHC features**
- 2. Particle identification
- 3. Tracking + energy deposition
- 4. Physics object reconstruction

LHC

Run 1

7 TeV

8 TeV

2012

75% nominal Lumi

30 fb⁻¹

GOAL: search for processes with very low cross sections

Need to accumulate High statistics:

- Increase COLLISION ENERGY as much as possible → to have higher cross sections.
- 2) Need HIGH LUMINOSITY: Increase beam focusing

 $N = L \sigma$

How to achieve High Luminosity?

$$\mathcal{L} = \frac{n_b \cdot N_1 \cdot N_2 \cdot f_{rev}}{4\pi \cdot \sigma_x \cdot \sigma_y} \cdot F$$

 $f_{\rm rev}$ is determined by accelerator radius = 11246 HZ for LHC

- 1) Increase number of bunches, n_b, in the accelerator, 2808 for LHC
- 2) Increase number of protons in the bunches, N_1 , N_2 (0.5x10¹⁰ \rightarrow 1.2x10¹¹)
- 3) Minimize the beam size at the collision point $\sigma = \sqrt{\beta \epsilon} \ (\beta = 50 \text{ cm} \rightarrow 25 \text{ cm}) \sigma = 3.5 \ \mu m \rightarrow \sigma = 2.5 \ \mu m$
- 4) Improve geometric factor F :reduce beam offsets and crossing angles (150 μ rad->120 μ rad)

Collisions at the LHC

05/12/2022

CMS Experiment at the LHC, CERN Data recorded: 2016-Oct-14 09:56:16.733952 GMT Run / Event / LS: 283171 / 142530805 / 254

High PILEUP event

How to reconstruct a physics process after a collision?

Physics Process = parton Collision

List of identified particles

What detector should be used?

The detector is designed to maximize energy deposition of each particle within its volumen.

The detector has to provide:

- Detection and identification of different particle types
- Measurement of particle momentum (tracker) and/or energy (Calorimeter)
- Coverage of full solid angle in order to detect all visible particles and then measure Missing ET (neutrinos + BSM neutral particles).
- Fast response (LHC bunch crossing period 25 ns).
- Practical limitations (Technology, radiation Hardness, space, budget)

 $\Delta E \neq 0 \rightarrow$ Information = detection

Detection of charged particles

- Ultimately all detectors end up detecting charged particles:
 - Photons are detected via electrons produced through:
 - Photoelectric effect
 - Compton effect
 - e⁺e⁻ pair production (dominates for E>5GeV)
 - Neutrons are detected through transfer of energy to charged particles in the detector medium (shower of secondary hadrons)
- Charged particles are detected via e.m. interaction with electrons or nuclei in the detector material:
 - Inelastic collisions with atomic electrons \rightarrow energy loss
 - Elastic scattering from nuclei \rightarrow change of direction

Heavy charged particle interactions

Processes that contribute to energy loss of heavy charged particles (other than electrons) passing through matter:

- Inelastic collisions with atomic electrons
- Elastic scattering from Nuclei
- Bremsstrahlung
- Emission of Cherenkov radiation
- Nuclear reactions

The first two are dominant.

For High energy particles the fraction of energy lost is small.

Stopping power

 r_{p} = classical electron radius = 2.82 fm; Z= Atomic number, A = atomic mass

I = mean excitation energy; δ = density effect correction

 T^{max} =maximum kinetic energy imparted to a free electron in a single collision. For heavy particles (m>>m_e), $T_{max} = 2m_e c^2 \beta^2 \gamma^2$

Elastic scattering

C. Avila

Bremsstrahlung

Radiation due to acceleration of charged particle by the Coulomb field of another charge

High Energy electrons predominantly loose energy in matter by bremsstrahlung.

$$\frac{d\sigma}{dk} \cong 5\frac{e^2}{\hbar c} Z_1^4 Z_2^2 \left(\frac{Mc}{mv_1}\right)^2 \frac{r_e^2}{k} \ln \frac{mv_1^2 \gamma^2}{k}$$

Cherenkov radiation

Radiation emitted when a charged particle traverses a medium with a speed greater than the speed of light in that medium.

Energy loss by electrons

1) By Bremsstrahlung

Energy loss by photons

C. Avila

 $I_{\gamma} = I_0 e^{-\mu x}$ μ : mass attenuation coefficient $\mu_i = \frac{N_A}{A}\sigma_i \quad \left[cm^2/g\right] \qquad \mu = \mu_{photo} + \mu_{Compton} + \mu_{pair} + \dots$ Part. Data Group Z=6 (a) Carbon 1 Mb σ – experimental σ_{tot} e[±] pair production dominates at Cross section (barns/atom) photoelectric effect high photon energies. 1 kb High energy photons can produce σ_{Rayleigh} electromagnetic showers: The photon emits e[±] pairs that emit Knuc 1 b new photons which also emit new e[±] pairs Compton Кe 10 mb 1 keV 1 MeV 100 GeV еV Photon Energy Rayleigh scattering pair production (no energy loss !) Compton scattering

05/12/2022

Electrons and photons: summary

γ

Photoelectric effect

Compton effect

Pair production

Nuclear interactions

The interaction of energetic hadrons (charged or neutral) with matter is dominated by inelastic nuclear processes.

For high energies (>1 GeV) the cross-sections depend only little on the energy and on the type of the incident particle (π , p, K...).

$$\sigma_{inel} \approx \sigma_0 A^{0.7} \quad \sigma_0 \approx 35 \, mb$$

In analogy to X₀ a hadronic interaction length can be defined

$$\lambda_I = \frac{A}{N_A \sigma_{total}} \propto A^{\frac{1}{3}}$$

Electromagnetic showers

High Z materials have short radiation lengths. Ex. Lead, $\rho = 11.4 \text{ g/cm} 3 \rightarrow X_0 = 5.5 \text{ mm}$

Hadronic showers

- Collisions of hadrons with nuclei produce hadronic showers.
- Nuclear interaction length λ ~ 35 g.cm⁻² A^{1/3}
- Hadronic showers develop later than EM showers and are more diffuse.
- Ex. Lead: λ = 17 cm.
- Preffered secondary particles are π's because they are the lightest hadrons.

Muon interactions

- Muons are charged leptons, only interact electromagnetically, loosing small amounts of energy.
- They do not generate EM showers given the mass dependence of Bremstrahlung radiation (~1/m²) (radiation is 4 orders of magnitude smaller than electrons).
- Muons are very penetrating, they can go through large amount of material loosing little energy.

Particle signatures

DETECTOR = TRACKING + EM CALORIMETER + HADRON CALORIMETER + MUON CHAMBERS

- Measure momentum and charge first (using B field) Low tracking material → minimally disrupt particle.
- Then absorb all energy of the particle in the calorimeters.
- Muons will traverse all calorimeters material → place muon chambers in the outermost layer for further tracking.
- Full coverage to measure momentum imbalance \rightarrow signature of neutrinos

Particle identification in a detector

e[±] : Energy in EM calorimeter matched to track.

 γ : Energy in EM calorimeter with no track. μ^{\pm} : match hits in muon chambers with hits in tracker.

Charged hadrons: Energy in EM + Hadron calorimeters matched to track.

Neutral hadrons: Energy in EM + Hadron calorimeters with no track.

Neutrinos: measure momentum imbalance

Tracker: arranged in thin layers with high space granularity to reconstruct tracks of charged particles.

EM Calorimeter: Made of High Z materials and thick enought to absorb all the energy of electrons and photons.

Hadron Calorimeter: Made of High Z materials and thick enough to absorb all energy of hadrons.

CMS DETECTOR

Weight:14000 tons; Length=21 m; Diameter: 15m, B field = 3.8 T

05/12/2022

CMS DETECTOR LS2 UPGRADES

https://home.cern/press/2022/CMS-upgrades-LS2

BEAM PIPE

Replaced with an entirely new one compatible with the future tracker upgrade for HL-LHC, improving the vacuum and reducing activation.

PIXEL TRACKER

All-new innermost barrel pixel layer, in addition to maintenance and repair work and other upgrades.

BRIL

New generation of detectors for monitoring LHC beam conditions and luminosity.

CATHODE STRIP CHAMBERS (CSC)

Read-out electronics upgraded on all the 180 CSC muon chambers allowing performance to be maintained in HL-LHC conditions.

HADRON CALORIMETER

New on-detector electronics installed to reduce noise and improve energy measurement in the calorimeter.

SOLENOID MAGNET

New powering system to prevent full power cycles in the event of powering problems, saving valuable time for physics during collisions and extending the magnet lifetime.

GAS ELECTRON MULTIPLIER (GEM) DETECTORS

An entire new station of detectors installed in the endcap-muon system to provide precise muon tracking despite higher particle rates of HL-LHC.

SUMMARY PARTICLE ID

- γ 'S: ECAL energy clusters not linked to any charged particle trajectory extrapolated from the tracker.
- e[±]: primary charged-particle track and ECAL energy clusters associated to this track and to bremsstrahlung photons.
- μ[±]: tracks in the central tracker consistent with either a track or several hits in the muon system, and associated with calorimeter deposits compatible with the muon hypothesis.
- Charged hadrons: charged-particle tracks not-identified as electrons, nor as muons
- **Neutral hadrons:** HCAL energy clusters not linked to any charged-hadron trajectory ,or as a combined ECAL and HCAL energy excess with respect to the expected charged-hadron energy deposit.

Particle Flow

https://dx.doi.org/10.1088/1748-0221/12/10/P10003

Combine info from all subsystems to generate a list of reconstructed particles to descrcibe the entire event

$e,\mu,\gamma,$ charged and neutral hadrons

- Used in the event as a list of generated particles in the event.
- Used to reconstruct jets, taus, Missing energy, isolation and identification of particles in multiple proton-proton collisions.

- Find μ´s and remove
- Find e's and remove
- Find charged hadrons and remove
- Find photons and remove
- Find neutral hadrons and remove

A large B field, good calorimeter granularity and high resolution tracking are needed for efficient PF.

BASIC KINEMATIC VARIABLES

• In hadron colliders we use

– **p,** η, φ

- Particle momentum:
 - $p = (p_x, p_y, p_z)$
- Pseudo-rapidity
 - Angle between particle momentum and beam axis (z-direction)
 - $\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$
- φ is angle in x-y-plane

$$p_x = p_T \cdot \cos(\varphi), p_y = p_T \cdot \sin(\varphi), p_T = \sqrt{p_x^2 + p_y^2}$$

Transverse plane

For every proton there is a probability for a single quark (or gluon) to carry a fraction "x "of the proton momentum

Small x = small energy, products boosted along beam direction

Large x = large energy, can create massive objects whose decay products have a large momentum transverse to the beam

Only can apply conservation of energy and momentum in transverse plane. Products traveling along the beamline cannot be recosntructed

UNDERLYING EVENT

- The parton-parton collision ocurrs at lower energy than the proton-proton collission.
- underlying event = Everything withouth the Hard interaction.

- The residual fragments of the protons evolve into a large # of soft pions.
- Egual amounts of π⁺, π⁻, π⁰ are produced.
 The π⁰'s quickly decay into γ's.

Jet Reconstruction

- In "nature" do not observe quarks and gluons directly, only hadrons, which appear collimated into jets
- Jet definition (experimental point of view): bunch of particles generated by hadronization of a common otherwise confined source:
 - Quark, gluon fragmentation
- Signature:
 - energy deposition in EM and hadronic calorimeters
 - Several tracks in the tracker

CALORIMETER CLUSTER RECONSTRUCTION

- Clusters of energy in a calorimeter are due to the original particles
 - Clustering algorithm groups individual channel energies
 - Don't want to miss any, don't want to pick up fakes
- Ways to do clustering
 - Just scan the calorimeter cell energies and look for higher energetic cells which give local maximum, build cluster around
 - Can used fixed "window" size or can do it dynamically and add cell if above a given threshold

Jet Algorithms

https://s3.cern.ch/inspire-prod-files-6/6904a3576c84c5d1f05a1f171cac3695

How to reconstruct the jet?

Group together the particles from hadronisation.

- 2 main Algorithms:
 - Cone kT

K_T jet Cone jet

2 requirements

Infrared-Safety

- Collinear splitting shouldn't change jets
- soft emission shouldn't change jets

Iterative cone algorithm

- Start with p_T ordered list of objects 1)
- 2.) Choose first object as seed
- 3.) Collect objects within a cone of radius R around the seed.

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \varphi^2} < R_{\rm cone}$$

- 4.) Recalculate jet-axis and use it as new seed.
- 5.) repeat from 3.) until stable axis.

- 6.) Declare constituents as a jet and remove them from the input list.
- 7.) Repeat from 2.) until list is empty.

Other algorithm options: Midpoint cone, seedless cone, etc.

$$E_T = \sum_i E_{Ti} \qquad \eta = \sum_i \frac{E_{Ti}}{E_T} \eta_i \qquad \phi = \sum_i \frac{E_{Ti}}{E_T} \phi_i$$

05/12/2022

C. AVIIA

\mathbf{k}_{T} Jet Algorithms

Classic procedure

. Recombine particles with nearly parallel momenta

 Calculate all distances d_{ji} between two particles i,j (with n=1):

$$d_{ij} = \min(d_i, d_j) \Delta R_{ij}^2 / R^2 \qquad d_i = p_{Ti}^{2n}$$

• Find smallest dij, di

- If smallest is a dij, combine i and j (sum 4momenta), update distances, proceed finding next smallest

- If smallest is a di, remove particle I, call it a jet.

- Repeat until all particles are clustered into a jet.
- Alternatives
 - Cambridge / Aachen (n=0)
 - Anti-kT (n= -1, preferred by ATLAS/CMS)

Energy Flow: Jet Composition

• Charged particles: ~60 %

Mostly charged pions, Kaons and protons.

• **Photons: ~25%**

Mostly from π^0 decays but also from bremstrahlung.

- Long lived neutral hadrons: ~ 10%
 K⁰_L, neutrons
- Short lived neutral hadrons: ~5% $K_s \rightarrow \pi^+ \pi^-$, $\Lambda \rightarrow \pi^- p$, etc.

B-Jet – tagging

- b hadrons are
 - long-lived ($c\tau$ ~450 μ m)
 - Massive
- Signature: displaced vertex
 - Important parameters are
 - d₀ = impact parameter (point closest approach in the x-y plane)
 - L_{xy} = distance between primary and secondary vertices
- b-tagging features are used now to train a deep learning neural net: 5 hidden layers 100 nodes each: DeepCSV.
- Different versions of DeepCSV according to discriminator threshold for misidentification rate of a light jet as b-jets: DeepCSVL, DeepCSVM, DeepCSVT (10%, 1%, 0.1%)

Charm – tagging

- The identification of c jets relies on the long lifetime (~1ps) and the mass of the c hadron.
- c-tagger algorithms exploit properties related to displaced tracks, secondary vertices, and soft leptons inside the jets.
- The training of the classifiers is performed using a Gradient Boosting Classifier (GBC). Two separate GBCs are provided, one for discriminating c jets from light jets (CvsL) and one for discriminating c jets from b jets (CvsB).

τ - tagging

• τ Decays

- 17% in muons
- 17% in electrons
- ~65% of τ 's decay hadronically in 1- or 3prongs ($\tau^{\pm} \rightarrow \pi^{\pm} \nu$, $\tau^{\pm} \rightarrow \pi^{\pm} \nu + n\pi^{0}$ or $\tau^{\pm} \rightarrow 3\pi^{\pm} \nu$, $\tau^{\pm} \rightarrow 3\pi^{\pm} \nu + n\pi^{0}$)
- To reconstruct hadronic taus
 - Look for "narrow" jets in calorimeter (EM + hadronic)
 - i.e. measure EM and hadronic radius (measurement of shower size in η-φ):

 $\sum E_{cell} \cdot R^2_{cell} / \sum E_{cell}$

- Form ΔR cones around tracks
 - tau cone
 - isolation cone
- associate tracks (1 or 3)

e ⁻ νν	17.8%
μ- νν	17.4%
h⁻v	49%
π- ν	11%
K⁻ν	0.7%
ρ- ν	25.4%
h⁺h⁻h⁻v	15%

Missing Transverse Momentum

- Missing momentum is not a useful quantity in a hadron collider as much energy from the proton remnants are lost near the beampipe
- Missing transverse momentum (P_T^{miss}) much better quantity
 - Measure of the momentum loss due to neutrinos
- Definition:

$$\vec{P}_{T,miss} = -\sum_{i} \vec{p}_{T,i}^{visible}$$
; $MET = \left\| \vec{P}_{T,miss} \right\|$

- Best missing E_T reconstruction
 - Use all calorimeter cells which are from clusters from electron, photon, tau or jet
 - Use all other calorimeter cells
 - Use all reconstructed particles not fully reconstructed in the calorimeter
 - e.g. muons from the muon spectrometer

Missing Transverse Energy

• But it's not that easy...

- Electronic noise might bias your E_T measurement
- Particles might have ended in cracks / insensitive regions
- Dead calorimeter cells
- Corrections needed to calorimeter missing E_T
 - Correction for muons
 - Recall: muons are MIPs
 - Correct for known leakage effects (cracks etc)
 - Particle type dependent corrections
 - Each cell contributes to missing E_T according to the final calibration of the reconstructed object (e, γ , μ , jet...)
 - Pile-up effects need to be corrected for.

CMS Experiment at the LHC, CERN Data recorded: 2015-Jul-12 06:52:51.677888 GMT Run / Event / LS: 251562 / 310157776 / 347

Summary

- Basic features of particle identification have been disussed: Muon, Electron, Photon, Tau, Jet, Missing E_T
- All the reconstructed quantities are the basic ingredient for all experimental physics studies: Precision SM measurements and BSM physics searches.
- Machine learning algorithms are leading particle ID in hadron collider epxeriments.
- High activity in the Physics Object reconstruction groups to improve particle-id efficiencies in different dinamic regimes, specially high-p_T

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

CMS SUPERCONDUCTING SOLENOID

- Encases the tracker, ECAL and HCAL
- Main features:
 - Interior B field = 3.8 T
 - Radius = 5.9 m
 - Length = 12.9 m
 - Current = 19.5 kA
- The exterior magnetic field is compactified and returned through a magnetized steel yoke (the muon detectors are inserted in the yoke).
- External B field ~2T
- The interior and exterior fields have opposite directions, which causes a double curvature to the muons, increasing the momnetum rresolution in the recosntruction of muons.

05/12/2022

CMS EM CALORIMETER

- 61,200 lead-tungstenate (PbWO4) crystals in the barrel and 7,324 crystals in each endcap.
- Coverage of |η|<3.0
- Granularity of 360 sections in φ, and ~200 sections in η.
- High energy and space resolution.
 Important for studying events like H → χγ

CMS TRACKER

- Pixel Detector: Silicon pixels. The inner-most detector. 1 m^2 , 66 million pixels.
- Tracker Inner Barrel and Disks (TIB/TID): Silicon micro-strips. 4 layers in the barrel and 3 layers in the disks.
- Tracker Outer Barrel (TOB): Silicon micro-strips. 6 layers.
- Tracker Endcaps (TEC₊/TEC₋): Silicon micro-strips. 9 lay-ers. 05/12/2022 C. Avila

TRACKING

CMS HADRON CALORIMETER

- The CMS HCAL is an arragment of brass, steel and scintillating tiles.
- The CMS HCAL is composed of a barrell calorimeter (HB). En-caps calorimeter (HE) and forward calorimeter (HF).
- Hcal system has a coverage of $|\eta| < 5.2$.
- It is segmented ito 54 sections in η , 18 wedges in ϕ , and 17 layers of tiles in r.

CMS MUON DETECTORS

- CMS MUON detectors: different types of gas detectors for muon tracking and triggering:
- **DRIFT TUBES:** Located in the barrel for tracking.
- CATHODE STRIP CHAMBERS: located in the endcaps: for tracking
- RESISTIVE PLATE CHAMBERS: Located in barrel and end caps2/for2triggering
 C. Avila

CMS TRIGGER + DAQ SYSTEM

The **trigger** decides in real-time which subset of data is to be readout by the detector and archived for offlinde analysis.

The **Data Acquisition (DAQ)** system collects the data from the different parts of the detector, converts the data in a suitable format and saves it to permanent storage.

CMS TRIGGER SYSTEM

- Only one out of several billion BX will have potentially interesting physics.
- Huge information of data produced in each BX

- Only interesting BX should be recorded automatically by the DAQ system.
- Trigger system composed of two parts:

1) LEVEL 1 TRIGGER(L1T)2) HIGH LEVEL TRIGGER(HLT)

 When an event passes the L1T and the HLT it triggers the DAQ, and the whole events is recorded.

CMS LEVEL-1 TRIGGER SYSTEM

- L1T fully implemented in dedicated custom electronics.
- It searches for signals of high-pT g, e±, μ±, jets, large Missing ET, etc.
- The accepted rate of events is about 10 kHZ.

HIGH LEVEL TRIGGER

- HLT is executed by a computer farm with more than a thousand cpus that executes more sophisticated filtering to the events accepted by L1T.
- The HLT is logically composed by several HLT-Paths. Each path tests the event for special signatures, usually related to specific kinds of physics events.
- The HLT reduces the rate of accepted events down to few hundred HZ.
 05/12/2022 C. Avila