
Basic Statistical Methods 
in HEP – Part 2

Andrés Flórez
Universidad de Los Andes

12/4/22 Andrés Flórez 1



Bayesian Statistics: In a  
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• Note that when the efficiency is 1 or 0                               becomes 0. 
This is problematic!
• In order to deal with these cases or cases where the efficiency is on 

the boundary of 0 or 1, we generally use Bayesian statistics. 
• Bayesian statistics considers priors, understood as believes or 

educated hypotheses based upon evidences. 
• This is approach is contrary with another statistical inference, known 

as frequentist statistics, where probabilities are understood as a 
frequency of random events, that emerge after many repeated trials 
of the test. 

𝜎!= n𝜖 (1 − 𝜖)
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• To determine the probability that  𝜖 is the true efficiency given the 
measurement of k positive results with respect to n measurements:

𝑃 𝜖; 𝑘, 𝑛 =
𝑃 𝑘; 𝜖, 𝑛 𝑃(𝜖; 𝑛)

𝐶
• Note that 𝑃 𝑘; 𝜖, 𝑛 is the binomial probability we just explained. 
• 𝑃(𝜖; 𝑛) is the probability to measure 𝜖 for a given value of n. Before any 

measurement we assume that 𝑃(𝜖; 𝑛) is uniform in the range between 0 and 
1, as 𝜖 can also take any value between 0 and 1.

• The constant is C = !
"#!

→ Please check Eq. 10 in this paper (Ullrich and Xu).  

http://phys.kent.edu/~smargeti/STAR/D0/Ullrich-Errors.pdf
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• Putting together all the parts:

𝑃 𝜖; 𝑘, 𝑛 =
𝑛 + 1 !

𝑘! 𝑛 − 𝑘 !
𝜖! 1 − 𝜖 "#!

Figures from Diego Casadei´s paper (CLICK)

n = 10 n = 100

https://twiki.cern.ch/twiki/pub/Main/MyStatRef/0908.0130v5.pdf
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• Using the probability, we can calculate the moments. 
• For the efficiency, we find that the mean is:

̅𝜖 =
𝑘 + 1
𝑛 + 2

• For the variance (proof in Ullrich and Xu paper):

𝜎$% =
(𝑘 + 1)(𝑘 + 2)
(𝑛 + 1)(𝑛 + 2)

−
𝑘 + 1 %

𝑛 + 2 %

• Note that the expression for the variance allows to handle the extreme 
case for k = 0 and k = 1. 

𝜎$ 𝑘 = 0, 𝑛 = 10 = 0.09 , 𝜎$ 𝑘 = 10, 𝑛 = 10 = 0.4



• Perhaps one of the most important 
distributions in particles physics. 
• Very useful in experiments with

discrete counts, at a fixed rate. 
• For the distribution on the right, 

we have the exact same Poissonian
random generator, with histograms 
with the same binning. The only 
difference is the number of counts. 
• Do you note something different?
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Poissonian Statistics
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Poissonian Statistics
• Imagine that for a given time “t” we expect 𝜇 events.
• We can divide “t” into “N” intervals: 𝛿𝑡 = 𝑡/𝑁.
• So, the probability of one event in a 𝛿𝑡 is 𝛿𝑝 = 𝜇 $%

%
= &

'
.

• Note that the problem as circled back to a sort of binomial 
distribution: N trials with 𝜇 positive (discreate) outcomes:

• Taking the natural log, expanding, using Stirlings approximation, and

• calculating the limit, we can proof: 𝑃 𝑛; 𝜇 = &!("#

"!

𝑃 𝑛; 𝜇 = lim
!→#

𝛿𝑝$ 1 − 𝛿𝑝 !%$ 𝑁!
𝑛! 𝑁 − 𝑛 !
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Poissonian Statistics
For the Mean

𝑛 = (
!"#

$

𝑛𝑃 𝑛; 𝜇 = (
!"#

$

𝑛
𝜇!𝑒%&

𝑛!

𝑛 = (
!"'

$

𝑛
𝜇!𝑒%&

𝑛!
=𝜇(

!"'

$
𝜇!%'𝑒%&

𝑛 − 1 !

𝑛 = 𝜇 (
!,"#

$
𝜇!,𝑒%&

𝑛,!

𝑛 = 𝜇

For the Variance

𝑛) = (
!"#

$

𝑛)𝑃 𝑛; 𝜇 = (
!"#

$

𝑛)
𝜇!𝑒%&

𝑛!

𝑛) = (
!"'

$

𝑛)
𝜇!𝑒%&

𝑛!
=𝜇(

!"'

$

𝑛
𝜇!%'𝑒%&

𝑛 − 1 !

𝑛) = 𝜇 (
!,"#

$

(𝑛, + 1)
𝜇!,𝑒%&

𝑛,!
= 𝜇) + 𝜇

𝜎% = 𝑛% − 𝑛 % = 𝜇



Poissonian Statisitics
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Simple Example 

• Imagine we want to measure experimentally the production cross 
section for a specific process of interest (for example: 𝑍 → 𝜇*𝜇#).
• We are informed that the collected luminosity by our experiment is 
𝐿 = 100.0 𝑓𝑏#+ and for this luminosity we expect a number of events 

𝜇 = 𝜎𝐿
• We select exactly two well reconstructed muons with opposite 

charge, which pass tight identification criteria and isolation. We veto 
other lepton flavors and b-jets. 
• With the selection criteria described above, we obtain 63,900,000

events that pass the “cuts”.   
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Simple Example 

• Note that the number of events is our best unbiased estimate of 𝜇:
𝜇( = 𝑁

• The uncertainty on the mean of the underlaying Poisson distribution 
is 𝑁

𝜇( = 𝑁 ± 𝑁
• VERY IMPORTANT: This is not the error on N – there is no 

uncertainty on what you counted.
• Putting together all the pieces together: 

𝜎 = 639 ± 0.08 × 10, 𝑓𝑏

12/5/22 Andrés Flórez
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• We understand probability as 
the area under the curve in a 
fixed distribution, with respect 
to the total area.

• We interpret it as the feasibility 
of a process to occur, given a 
known PDF. ocurra en ese 
rango.

𝑷(𝒅𝒂𝒕𝒂 | 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 ) = Probability to get some data, given a distribution



Likelihood
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• Distribution normalized to unity 
à area under the curve = 1

• a.u: “arbitrary units”
• Likelihood represents the value 

that a given point can have with 
respect to a probability 
distribution that can be moved.
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𝑓 𝑥 =
1

𝜎 2𝜋
𝑒3

!
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435
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Likelihood

L(distribution | 𝒅𝒂𝒕𝒂 ) = Likelihood of a distribution, given data



Introduction to Likelihoods

• In different type of experiments, we can have data of some kind, with 
different information.
• If we have “N” events collected at the LHC: 
• How many correspond to background and how they distribute across the different 

observables?  
• Are there events from particles beyond the SM (signal)? 
• How likely is that a difference between the observed data and the predicted 

background yields, come from a new signal? 
• If so, how those signal events are distributed? What is shape that characterize 

them?
• As an example, lets assume that we have a random set of 

measurements of a variable X. Lets use a hypothesis that those events 
are normally distributed.

12/4/22 Andrés Flórez 14
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X

Hypothetical PDF

𝑓< 𝑥 =
1

𝜎 2𝜋
𝑒=

<
>
?!=@
A

"

How can we fit a distribution to the data?

Note that the probability that the data is described 
by the normal distribution located at this point is 
low….
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X

𝑓> 𝑥 =
1

𝜎 2𝜋
𝑒=

<
>
?"=@
A

"

Hypothetical PDF

Still not very likely…..
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X

𝑓B 𝑥 =
1

𝜎 2𝜋
𝑒=

<
>
?#=@
A

"

Hypothetical PDF

Perhaps this is a better 
choice…
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X

𝐿 𝜇, 𝜎 𝑥!, 𝑥"…𝑥#) = )
$%!

#

𝐿 𝜇, 𝜎 𝑥$)

Total likelihood for a set of points

Note we started with a normal distribution with  random mean and s.t.d
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X
Note we started with a normal distribution with  random mean and s.t.d

Li
ke

lih
oo

d
Point where the 

likelihood is maximum: It 
is the maximum 

likelihood for the mean of 
our data.
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 Which is the correct PDF?

• So far, we just estimated the 
maximum likelihood for the
mean, but what about the 
maximum likelihood for the s.t.d?

• We follow the same procedure!
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X
Note we started with a normal distribution with  random mean and s.t.d

Li
ke
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oo

d
Point where the standard 
deviation maximizes the 
likelihood of observing 

the data



Introduction to Likelihoods

• We can do this mathematically! We will use the Gaussian distribution as 
an example. Remember our expression for the total likelihood:

• Now, we need to take the derived with respect to 𝜇 (𝜎), keeping 𝜎 (𝜇)
constant, and equal the expression to zero to find the maximum for 𝜇 (𝜎).
• To facilitate the process, we take the “ln” of the likelihood: 
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𝐿 𝜇, 𝜎 𝑥&, 𝑥'…𝑥$) = ∏()&
$ 𝐿( 𝜇, 𝜎 𝑥() = &

* '+ 𝑒
%*+

,*-.
/

+

×⋯ . .× &
* '+ 𝑒

%*+
,0-.
/

+

ln(𝐿 𝜇, 𝜎 𝑥&, 𝑥'…𝑥$)) = ln &
* '+ 𝑒

%*+
,*-.
/

+

×⋯ . .× &
* '+ 𝑒

%*+
,0-.
/

+



Introduction to Likelihoods

• Using the properties of ln:

• Note that

ln &
* '+ 𝑒

%*+
,*-.
/

+

= ln &
* '+ + ln 𝑒%

*
+
,*-.
/

+

= ln 2𝜋𝜎' %&/' − &
'

-*%.
*

'
ln(𝑒)

ln &
* '+ 𝑒

%*+
,*-.
/

+

= − &
' ln 2𝜋𝜎' − &

'
-*%.
*

'
= − &

' ln 2𝜋 − ln(𝜎) − &
'

-*%.
*

'
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ln(𝐿 𝜇, 𝜎 𝑥&, 𝑥'…𝑥$)) = ln &
* '+ 𝑒

%*+
,*-.
/

+

+⋯+ ln &
* '+ 𝑒

%*+
,0-.
/

+



Introduction to Likelihoods

• Therefore:

ln(𝐿 𝜇, 𝜎 𝑥!, 𝑥"…𝑥#)) =−
!
"
ln 2𝜋 − ln 𝜎 − !

"
$*%&
'

"
−⋯−− !

"
ln 2𝜋 − ln(𝜎) − !

"
$0%&
'

"

• Now we can combine the terms:

ln(𝐿 𝜇, 𝜎 𝑥&, 𝑥'…𝑥$)) =− $
' ln 2𝜋 −𝑛ln 𝜎 − &

'
-*%.
*

'
−⋯− &

'
-0%.
*

'

• Taking the derivative with respect 𝜇:
/
/. ln(𝐿 𝜇, 𝜎 𝑥&, 𝑥'…𝑥$)) = -*%.

*+ +⋯+ -0%.
*+ = &

*+ 𝑥& +⋯+ 𝑥$ − 𝑛𝜇

• Likewise, we take the derivative with respect 𝜎:
-
-.

ln(𝐿 𝜇, 𝜎 𝑥+, 𝑥/…𝑥")) = − "
.
+ 0(#& )

.*
+⋯+ 0+#& )

.*
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Introduction to Likelihoods
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Li
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/
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𝝁 =
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Introduction to Likelihoods

• With this information we conclude:
• The mean of the data is the maximum likelihood estimate for where the 

center of the Gaussian distribution must be located.
• We use the formula for the s.t.d to determine the width of the Gaussian curve

that, according to the data, give the maximum likelihood. 

• Although this example was performed with the Gaussian 
distribution, the logic is the same for other types of PDFs!
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p-values
• If I have a measurement where there is a difference between the BKG 

and the observed data, the null-hypothesis test states that the 
difference comes from random chance alone. 
• The p-value is defined as the probability that random chance 

generates an extreme result that could explain the difference 
between the observed and the expected data, assuming that the null 
hypothesis is true. 
• P-values are composed by three parts:

1. The probability that random change would yields the observed data.
2. The probability of observing something else that is equally rare.
3. The probability of observing something more extreme. 
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X

• Now, remember that we understand, 
graphically, the area under the curve for 
a given range with respect the total area.

• For example, the shaded area 
corresponds to 95% of the total area. 
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X

2.5% probability.

• Imagine we measure the extreme value 
• To calculate a p-value, we basically add the areas un 

the curve.
• For this case, the p-value is = 0.025 + 0.025 = 0.05.
• So, the p-value is the probability that something

equally rare or rarer explains the observed data, 
given a distribution. 
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X

• Very unlikely that any event falling here, 
explains the data with this given distribution



Hypothetical 
distribution for signal
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Example



Background 
distribution: shape 

and rate
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Overlaying the two 
distributions
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First case: there is  
agreement between 
the observed data 
and the predicted 

background
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Likelihood ratio as test statistic…

• So, we have some number of events for background distributed 
according to some shape, which depends on the topology of the 
analysis. We will represent the distribution of background events as 
𝑓(𝑥|𝐻4), where 𝐻4 represents all the background events.
• Note that known precisely 𝒇(𝒙|𝑯𝟎) is an idealized situation.  
• Similarly, 𝑓(𝑥|𝐻+) describes the distribution of signal and background 

events mixed. 
• Now, imagine that for a given luminosity, we have “s” number of signal 

events and “b” number of background events. 
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Likelihood ratio as test statistic…

• As we discussed yesterday, we expect that the observed number of events 
follow a Poissonian distribution:

𝑃 𝑛| 𝑏 =
𝑏"

𝑛! 𝑒
37 , 𝑃 𝑛|𝑏 + 𝑠 =

(𝑏 + 𝑠)"

𝑛! 𝑒3(7#8)

• The likelihood function for the entire experiment assuming the background-
only hypothesis (𝐻9):

𝐿7 =
𝑏"

𝑛! 𝑒
37H

:;!

"

𝑓(𝑥:|𝑏)

• Similarly, for the signal plus background hypothesis:

𝐿7#8 =
(𝑏 + 𝑠)"

𝑛!
𝑒3(7#8)H

:;!

"

𝛼7𝑓 𝑥:|𝑏 + 𝛼8𝑓(𝑥:|𝑠)
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priors



Likelihood ratio as test statistic…

• To test if the observed data, given the certain predicted background, 
might contain signal events of interest, we use a monotonic set test 
statistic, defined as Q:

𝑄 = −2ln
𝐿6*7
𝐿6

= −𝑠 +P
89+

"

ln 1 +
𝑠
𝑏
𝑓(𝑥8|𝑠)
𝑓(𝑥8|𝑏)

• Note that we would need to know 𝑓(𝑥|𝑏) and 𝑓 𝑥|𝑠 with relatively 
good precision. 
• To compute p-values for the b and s+b hypotheses given an observed 

value of Q we need the distributions 𝑓(Q|𝑏) and 𝑓(Q|𝑏 + 𝑠) .
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Distribution of Q (From Glen Cowan)
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Practical experimental example…

• Suppose we have a prediction of 𝑏 = 9.00 ± 3.00, 
an observation of 𝑛 = 10, and expected signal 
yield of 𝑠 = 1.00, considering a production cross 
section for signal 𝜎-0 = 1.00 pb. 
• The main question is: Can we exclude this signal 

model, given the observed data and the predicted 
BKG rate?
• Note that for a normal distribution the Z-score 

(𝑍 = -%.
* ) of 1.64, corresponds to 90%. 
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Practical experimental example…

• Therefore, to be able to exclude a signal at 90% C.L, given the observed 
data and predicted BKG, we can make the following rough calculation.
• We will need at least 𝑠"<<= = 1.64 × 𝛿𝑏 = 1.64 × 3.00 = 4.92 events in 

order to be able to exclude the signal model.
• Nevertheless, we have only 1.00 expected events in signal, weighted with a 

cross section of 1.0 pb.
• We can parametrize this as 𝑠"<<= = 𝑠 × 𝑟 = 4.92, so 𝑟 = 4.92. 
• Now, we can estimate the experimental cross section is 

𝜎483"<<= = 𝜎48× 𝑟 = 4.92
• Since the experimental cross section is almost 5 times the theoretical cross 

section, we cannot exclude this signal hypothesis. 
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Example from CMS
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Second case: There is 
a significant excess of 
events with respect 
to the background 

prediction.
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Now, we perform a fit in order to 
determine if our hypothetical signal 

agrees, both shape and rate, with the 
excess of events.
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Example from CMS
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The Higgs Boson!
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Summary
• Understanding some fundamental statistical concepts 

is fundamental is particles physics: mean, variance, 
PDF….

• Some PDF are widely used in our field, and many 
others, and it is important to understand their 
similarities and differences: Gaussian, Poissonian, 
Lorentzian, etc.

• Understanding the difference between probability and 
likelihood is very important. 

• There are other important concepts I could not cover 
because of time, but I hope this material could be 
useful somehow for your careers….it was prepared 
with love and dedication for all of you!
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Thank you!


