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Bayesian Statistics: In a

* Note that when the efficiency is 1 or 0 0, = \/ne (1-¢) becomes 0.
This is problematic!

* In order to deal with these cases or cases where the efficiency is on
the boundary of O or 1, we generally use Bayesian statistics.

e Bayesian statistics considers priors, understood as believes or
educated hypotheses based upon evidences.

* This is approach is contrary with another statistical inference, known
as frequentist statistics, where probabilities are understood as a
frequency of random events, that emerge after many repeated trials
of the test.

12/5/22 Andrés Florez
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Bayesian Statistics: In a

* To determine the probability that ¢ is the true efficiency given the
measurement of k positive results with respect to n measurements:

P(k;e,n)P(€;n)

C
* Note that P(k; ¢,n) is the binomial probability we just explained.

P(e; k,n) =

* P(e;n) is the probability to measure ¢ for a given value of n. Before any
measurement we assume that P (¢; ) is uniform in the range between 0 and
1, as € can also take any value between 0 and 1.

* The constantis C = ﬁ — Please check Eq. 10 in this paper (Ullrich and Xu).

12/5/22 Andrés Florez
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Bayesian Statistics: In a
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* Putting together all the parts:

(n+1)!
k!(n—k)!

P(e:k,n) = ef(1 —e)nk

12/5/22
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Efficiency ¢

Figures from Diego Casadei’s paper (CLICK)
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https://twiki.cern.ch/twiki/pub/Main/MyStatRef/0908.0130v5.pdf
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Bayesian Statistics: In a €

* Using the probability, we can calculate the moments.

* For the efficiency, we find that the mean is:
k+1

n+ 2
* For the variance (proof in Ullrich and Xu paper):

E:

(k+1D(k+2) (k+1)?
n+Dn+2) @n+2)?2

* Note that the expression for the variance allows to handle the extreme
case fork=0and k = 1.

o.(k =0,n=10) = 0.09 ,0.(k = 10,n = 10) = 0.4

0% =

12/5/22 Andrés Florez
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* Perhaps one of the most important
distributions in particles physics. S

012_ ............... ............... ............... .......... 'u?.'.. .......... .............. n = 10000000

+ For the distribution on the right. 008_ ............... T .

_ , SO FS S N TS N S = S S 1
we have the exact same Poissonian e

oo . B— AU S S B [ S -

random generator, with histograms -
with the same binning. The only .
difference is the number of counts. e R R
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(yn

* Imagine that for a given time we expect /1 events.
* We can divide “t” into intervals:

AN

* So, the probability of one eventin a 0t is

* Note that the problem as circled back to a sort of binomial
distribution: N trials with 11 positive (discreate) outcomes:

* Taking the natural log, expanding, using Stirlings approximation, and

 calculating the limit, we can proof:
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Poissonian Statistics
00 n,—u co 00 n,_—u
<n>=;)np(n;u>=;n - <n2>=;n2P<n ) =;)n2 —
=< ‘une—/,t_ > Mn—le u B = ‘une [,L_ > ‘un—le u
(n) ;n m _M;(n—l)' (n?) = ;nz - _M;n(n—l)'
> ‘un'e—u > ‘un U
(my=p ) () =p ) v+ D=+
n=0 n=0
(n) = p 0% =(n°) — (n)* = u
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Poissonian Statisitics

LU AL L L L L L

h2
Entries 1e+07
Mean 2.501
Std Dev 1.581

MM T T T T T T T T T T T T T T T T TTTTTTTTTTT

h2

Entries
Mean
Std Dev

#include<TPaveText.h>
void Pois(){
TCanvas *cl = new TCanvas("cl1l","Fitting Demo",10,10,700,500);
cl->SetFillColor(33);
cl->SetFrameFillColor(41);
cl->SetGrid();

TH1D* h2 = new TH1D("h2", " ", 20, -0.5, 19.5);

TRandom3 rndgen;

for(double i = 0; i < 10000000; i++) {
double rnd = rndgen.Poisson(7.5);
h2->Fill(rnd);

}
h2->SetLineColor(kBlack);

h2->Scale(l./h2->Integral());
h2->Draw( "HIST");
cl->cdQ);
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Simple Example

* Imagine we want to measure experimentally the production cross
section for a specific process of interest (for example: ).

* We are informed that the collected luminosity by our experiment is
and for this luminosity we expect a number of events

* We select exactly two well reconstructed muons with opposite
charge, which pass tight identification criteria and isolation. We veto
other lepton flavors and b-jets.

* With the selection criteria described above, we obtain 63,900,000
events that pass the “cuts”.
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Simple Example

* Note that the number of events is our best unbiased estimate of u:
He = N

* The uncertainty on the mean of the underlaying Poisson distribution

is VN
//le:Ni\/ﬁ

« VERY IMPORTANT: This is not the error on N — there is no
uncertainty on what you counted.

* Putting together all the pieces together:
o = (639 +0.08)x 10° fb

12/5/22 Andrés Florez
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* We understand probability as
the area under the curve in a
fixed distribution, with respect
to the total area.

* We interpret it as the feasibility
of a process to occur, given a
known PDF.

3

Distribution X

12/4/22 Andrés Florez 12
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e Distribution normalized to unity
— area under the curve =1

* a.u: “arbitrary units”

* Likelihood represents the value
that a given point can have with
respect to a probability
distribution that can be moved.

__8 9 10
Distribucion X

12/4/22 Andrés Florez 13
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Introduction to Likelihoods

* In different type of experiments, we can have data of some kind, with
different information.

* If we have “N” events collected at the LHC:

 How many correspond to background and how they distribute across the different
observables?

* Are there events from particles beyond the SM (signal)?

* As an example, lets assume that we have a random set of
measurements of a variable X. Lets use a hypothesis that those events
are normally distributed.
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How can we fit a distribution to the data?

Hypothetical PDF ‘

_

1
fi(x) = ame 2

Note that the probability that the data is described
by the normal distribution located at this point is
low....

Andrés Florez
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Hypothetical PDF ‘

12/4/22 Andrés Florez 16



Hypothetical PDF

Perhaps this is a better
choice...

12/4/22 Andrés Florez 17



Total likelihood for a set of points

n
L(,U,,O' ‘ X1, X2 xn) — HL(IU”O- ‘ xi)
1=1

X

Note we started with a normal distribution with random mean and s.t.d

12/4/22 Andrés Florez 18




Likelihood

Point where the

@ =mmme) | likelihood is maximum: It
is the maximum

likelihood for the mean of

P our data.

X

Note we started with a normal distribution with random mean and s.t.d

12/4/22 Andrés Florez 19



* So far, we just estimated the
maximum likelihood for the
mean, but what about the
maximum likelihood for the s.t.d?

* We follow the same procedure!

0.04

a.u

0.035

0.03

0.025

0.02

0.015

0.01

0.005

Which is the correct PDF?

_|__||i|u_|-—i-‘|__|_||i||||i||||i||||i||||i||_|__r-i——|__|_||i||__|__|__

1 p) 3 4 5 6 7 8 9 10
Distribucion X



Likelihood

Point where the standard

@ =====) | deviation maximizes the

likelihood of observing

the data

X

Note we started with a normal distribution with random mean and s.t.d

12/4/22 Andrés Florez 21
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Introduction to Likelihoods

* We can do this mathematically! \We will use the Gaussian distribution as
an example. Remember our expression for the total likelihood:

: L)1 ey
L(u,o|x1,x5 oxy) = izlL((,u,alxi)=G —e 2\ 0 / X X—=e 2\ ¢

* Now, we need to take the derived with respect to u (o), keeping o (i)
constant, and equal the expression to zero to find the maximum for u (o).

* To facilitate the process, we take the “In” of the likelihood:

O R =)
In(L(u, 0 | x1,%5 ... X)) =1In —5=€ 2 0 X X 2L o

12/4/22 Andrés Florez 22
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Introduction to Likelihoods
* Using the properties of In:
IN(L(w,0 | x1, x5 ...X5)) = In(m/lﬁ e_%(y%) > + -+ 1In (G\/lﬁ e_%(xna_ﬂ) )
* Note that
In(m/lﬁ e_%(xlT_u)Z) = In (G\/lﬁ) + In (e_%()%)z) = In|(2no?)71/2] - %(%)2 In(e)
In(a\/lﬁ e_%(xl(;_“f) = —% In(2mo?) —%(xla_u)z = —%In(Zn) —In(0) — %(xla_”)z

12/4/22 Andrés

Florez 23
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Introduction to Likelihoods

 Therefore:

— 1\ 2 N
In(L(u, 0| x1,%5 ... X5)) :—%In(Zn) —In(o) — %(xla “) — e — —%In(Zn) —In(0) —%(xng “)
* Now we can combine the terms:
_n 1/x1—U 2 1/x,—U 2
In(L(u, 0 | x1, %5 ... x,)) -—Eln(Zn) —nin(o) — E( 10 ) — e — E( - )

* Taking the derivative with respect u:
(L0 | 21,0 ) = (BF) + 4 () = S [Ge + -+ x) — ]

0-2
* Likewise, we take the derivative with respect o:

n, a-w? | (epmp)?
12/4/22 ao_ |n(L(‘L£’ O- | xl’ xz xn))A d_FI o -I_ 0-3 -I_ -I_ 0-3 24
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Introduction to Likelihoods

Likelihood

0 0
T In(L( 0 | X1, % - %)) = O Z (L, 0 | %1, .. Xn)) = O

Likelihood

12/4/22 Andrés Florez 25
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Introduction to Likelihoods

e With this information we conclude:

* The mean of the data is the maximum likelihood estimate for where the
center of the Gaussian distribution must be located.

e We use the formula for the s.t.d to determine the width of the Gaussian curve
that, according to the data, give the maximum likelihood.

* Although this example was performed with the Gaussian
distribution, the logic is the same for other types of PDFs!

12/4/22 Andrés Florez 26
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p-values

e If | have a measurement where there is a difference between the BKG
and the observed data, states that the
difference comes from random chance alone.

* P-values are composed by three parts:
1. The probability that random change would yields the observed data.
2. The probability of observing something else that is equally rare.
3. The probability of observing something more extreme.



* Now, remember that we understand,
graphically, the area under the curve for
a given range with respect the total area.

* For example, the shaded area

corresponds to 95% of the total area.

X

12/5/22 Andrés Florez 28



* Imagine we measure the extreme value
To calculate a p-value, we basically add the areas un

the curve.
For this case, the p-value is = 0.025 + 0.025 = 0.05.

So, the p-value is the probability that something
equally rare or rarer explains the observed data,

given a distribution.

2.5% probability.

X

12/5/22 Andrés Florez 29
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* Very unlikely that any event falling here,
explains the data with this given distribution

X

Andrés Florez
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Example

12/4/22

O

Hypothetical
distribution for signal

Andrés Florez

(2]
o

Lorenziana

Eventos

i
o

25 3
Distribucion X




Example

Background

distribution: shape
and rate

2 25 3
Distribucion X

/4
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Example

/\/\/\ —— Background fit |
— Signal fit )

Overlaying the two
distributions

25 3
Distribucion X

/4
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Example

O

First case: there is
agreement between
the observed data
and the predicted

O background

12/5/22 Andrés Florez 34
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Likelihood ratio as test statistic...

* So, we have some number of events for background distributed
according to some shape, which depends on the topology of the
analysis. We will represent the distribution of background events as

, Where H, represents all the background events.

e Similarly, describes the distribution of signal and background
events mixed.

ao_

* Now, imagine that for a given luminosity, we have “s” number of signal
events and “b” number of background events.

12/5/22 Andrés Flérez 35
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Likelihood ratio as test statistic...

* As we discussed yesterday, we expect that the observed number of events

follow a Poissonian distrrilbution: .
b b+s
P(n|b) = —e™ ,P(n|b+5s) = ( )
n! n!

* The likelihood function for the entire experiment assuming the background-
only hypothesis (Hy):

e—(b+s)

T
Ly =—e™| | £Cxilb)
i=1
 Similarly, for the signal plus background hypothesis: prlors

_(bts)" o—(b+5)

B H( i 16) (@ (1)

12/5/22 Andrés Florez 36

b+s —



Universidad de

los Andes

Likelihood ratio as test statistic...

* To test if the observed data, given the certain predicted background,
might contain signal events of interest, we use a monotonic set test
statistic, defined as Q:

o= 3 n(1 43100

* Note that we would need to know f(xlb) and [ (x|s) with relatively
good precision.

* To compute p-values for the b and s+b hypotheses given an observed
value of Q we need the distributions [ (Q|b)and [ (Q|b + 5).

12/5/22 Andrés Florez 37



Universidad de

los Andes

Distribution of Q (From Glen Cowalr’:%|

Suppose in real experiment

Take e.g. b =100, s = 20. / O is observed here.

g
/(O
f(Qls+b) | i
0. —\\
0.02 _—
98;] - -610 l -40 l -210 — 0
/ \ Q
p-value of b only p-value of s+b
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Practical experimental example...

* Suppose we have a prediction of b = 9.00 & 3.00,  sunwnoms oewmen peolo=t

an observation of n = 10, and expected signal

yield of s = 1.00, considering a production cross ;

section for signal g, = 1.00 pb. -
* The main question is: Can we exclude this signal

model, given the observed data and the predicted

BKG rate? . 35 30 25 20 15 -1.0 ».IS .0 ; 1.0 ) 1,? 2..0 2.? 30 35
* Note that for a normal distribution the Z-score ||

(Z = =) of 1.64, corresponds to 90%. I

12/5/22 Andrés Florez 39
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Practical experimental example...

* Therefore, to be able to exclude a signal at 90% C.L, given the observed
data and predicted BKG, we can make the following rough calculation.

* We will need atleast s,,.,;, = 1.64 X 0b = 1.64 x 3.00 = 4.92 events in
order to be able to exclude the signal model.

* Nevertheless, we have only 1.00 expected events in signal, weighted with a
cross section of 1.0 pb.

* We can parametrize thisas s,,..; = s X1 = 492,501 = 4.92.

* Now, we can estimate the experimental cross section is

* Since the experimental cross section is almost 5 times the theoretical cross
section, we cannot exclude this signal hypothesis.

12/5/22 Andrés Florez 40



Universidad de

los Andes

Example from CMS

138 b (13 TeV)

LA LA LN L I Y R
—— A=A'=0.01 i
—— A=A'=0.1

V. > epu
95% CL upper limits
Observed

- --- Median expected
I 68% expected
95% expected

1072

I|I
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

m. (GeV)

HTTT
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Second case: There is
a significant excess of
events with respect
to the background

O prediction.
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Lorentzian Peak on Quadratic Background

4+ Data

— Background fit |-
— Signal fit

— Global Fit

Eventos

Now, we perform a fit in order to
determine if our hypothetical signal
agrees, both shape and rate, with the
excess of events.

25
Distribucion X
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5 138 b (13 TeV) 138 b (13 TeV)
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The Higgs Boson!

19.7 fo" (8 TeV) + 5.1 fb™ (7 TeV)
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Summary

* Understanding some fundamental statistical concepts
is fundamental is particles physics: mean, variance,
PDF....

* Some PDF are widely used in our field, and many
others, and it is important to understand their
similarities and differences: Gaussian, Poissonian,
Lorentzian, etc.

* Understanding the difference between probability and
likelihood is very important.

* There are other important concepts | could not cover
because of time, but | hope this material could be
useful somehow for your careers....it was prepared
with love and dedication for all of you!

Andrés Florez
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Thank you!

Andrés Florez




