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Cosmological perturbations 
Summary 

1. Inflation. Background evolution and basic definitions. 
2. Scalar field inflation.  
3. Inflationary perturbations and gauge fixing.  
4.Stochastic properties and statistical approach.  
5. Cosmological perturbations in large scale structure 

formation.  

Notation

c = h = 1.

ημν = diag(−1, 1, 1, 1) .

Natural units:

Signature:



Cosmological Background
Einstein equations and Friedman-Lemaitre-Robertson-Walker 
(FLRW) solution

Gμν = Rμν −
1
2

gμνR = 8πGTμν .

Einstein equations dictates the dynamics of the universe: 

Cosmological principle: homogeneous and isotropic fluid at large 
scales. L  1 - 100 Mpc. 1 Mpc = 3x1024 cm  3x106 - 3x108 light-years.  ∼ ∼

Homogeneous Isotropic

Rσ
μρν = ∂ρΓσ

μν − ∂νΓσ
μρ + Γσ

αρΓα
μν − Γσ

ανΓα
μρ, Γα

μν =
1
2

gαβ (∂μgνβ + ∂νgμβ − ∂αgμν) .

Rμν = Rσ
μσν, R = gμνRμν .



Cosmological Background
Einstein equations and Friedman-Lemaitre-Robertson-Walker 
(FLRW) solution

Kinematic quantities:  
Observeres (timelike) 4-velocity

FLRW solution: A solution reflecting isotropy and homogeneity 

hμν = gμν + uμuν, hμνuμ = 0.

xi → xi + di, xi → Ri
jxj, Ri

j ∈ SO(3) .
Symmetric under translations and rotations: 

ds2 = − dt2 + a2(t) δijdxidxj .

uμ =
dxμ

ds
, gμνuμuν = − 1, uμ = (∂t)μ = (1, 0, 0, 0) .

Induced spacial metric: uμ

hμν



Cosmological Background
Einstein equations and Friedman-Lemaitre-Robertson-Walker 
(FLRW) solution
Matter contents: Energy momentum tensor of a general fluid:  

Tμν = (ρ + p)uμuν + pgμν, Tμν = diag(ρ, p, p, p) .

Continuity equation 

∇μTμν = 0.

Tμν = ρuμuν + phμν + 2q(μuν) + Σμν .

ρ = Tμνuμuν →

qμ = − hμ
σTσρuρ →

p =
1
3

Tμνhμν →Matter-Energy 
density.

Isotropic 
pressure.

Σμν = h(μ
σhν)

ρTσρ →Energy flux
Zero trace 
anisotropic 
stress tensor

Energy momentum tensor of a single, perfect fluid ( ):  qμ = 0, Σμν = 0



Cosmological Background
Einstein equations and Friedman-Lemaitre-Robertson-Walker 
(FLRW) solution

H ≡
·a
a

, H2 =
8πG

3
ρ,

··a
a

= ·H + H2 = −
4πG

3
(ρ + 3p) .

Friedmann equations 

∇μTμν = 0 →
dρ
dt

+ 3H(ρ + p) = 0.

Hubble  
rate

Gμν = Rμν −
1
2

gμνR = 8πGTμν .

R00 = − 3
··a
a

, Rij = δij (2 ·a2 + a ··a), R = gμνRμν = 6 (
··a
a

+ (
·a
a )

2

) .

Continuity 
equation

dρ
da

da
dt

+
1
a

da
dt

3ρ(1 + ω) = 0 →
d ln ρ
d ln a

+ 3(1 + ω) = 0 → ρ = ρ0a−3(1+ω) .

Equation of state 
(barotropic fluid) p = ωρ .



Cosmological Background
Causal structure at large scales

ρ = ρ0a−3(1+ω), H2 =
8πG

3
ρ → a = a0t

2
3(1 + ω) .

Evolution of the scale factor

Ultra non-relativistic matter ω = 0, ρ = ρ0a−3, a = a0t2/3 .

Particular cases of the equation of state

Radiation ω = 1/3, ρ = ρ0a−4, a = a0t1/2 .
Vacuum, Λ ω = − 1, ρ = ρ0, a = a0eHt .
Light geodesics and particle horizon

0 = ds2 = − dt2 + a2(t) δijdxidxj → dr =
dt

a(t)
.

RH(t) = a(t)∫
t

0

dt′�
a(t′�)

.
Physical distance that a 
photon travels

Photons trajectory

Particle horizon
Maximum distance that an 
observer can reach in a 
causal way.



Cosmological Background
Causal structure at large scales
Comoving and physical scales 

Comoving distance .  Physical distance ,  x xp = ax
Conformal time  τ

⇒ dτ =
dt

a(t)
, τ = ∫

t

0

dt′�
a(t′�)

.

ds2 = − dt2 + a2(t) δijdxidxj = a2(τ)[−dτ2 + δijdxidxj],

τ

xi

x = ± τ + const .
Null geodesics

x =
τ

x =
−

τ

A

B′�B

Frontiers between regions in causal 
contact with an observer, and 
regions without causal contact.  

Causally 
disconnected 
from A 

Causally 
connected 
with A 



Cosmological Background
Causal structure at large scales
Hubble radius

τ = ∫
t

0

dt′�
a(t′�)

= ∫
t

0

1
a(t′�)

dt′�
da

da = ∫
a

0 ( 1
aH ) d ln a .

2π
(aH)−1

λ
=

k
aH

.

Comoving particle horizon .  
Hubble radius: .  
Comoving Hubble radius: . 

τ
H−1

(aH)−1

Scales and Hubble radius

Physical wavelength λ = aλcomoving = a2π/k
Comparison of scales:

k
aH

≪ 1 → λ outside the horizon .

k
aH

≫ 1 → λ inside the horizon .

Number of e-folds dN = Hdt = d ln a .



Cosmological Background
Inflation and the horizon problem (in few words)
Surface of last scattering and causally connected regions. The time when 
photons decouple from matter, at temperature T  0.3 eV, at time t  
3x105 years. 

∼ ∼

τ = ∫
a

0 ( 1
aH ) d ln a ∝ a

1
2 (1+3ω) .

For , the horizon is growing monotonically, so, photons that we see 
today, tracked back in the past, come from regions causally 
disconnected. The problem with that is that those causally disconnected 
regions share very similar features, for instance, the distribution of 
temperature perturbations around decoupling time is homogeneous and 
isotropic. This is, causally non-communicating regions share basically the 
same features.     

ω > 0

RH = ( 1
H )

In terms o the Hubble radius. If the Hubble radius grows monotonically, 
then, homogeneous regions that we see today were far outside the Hubble 
radius in the past  



Cosmological Background
Inflation and the horizon problem (in few words)
Surface of last scattering and causally connected regions.  

rH = ( 1
H )

72

log a
Figure 2: The horizon scale (green line) and a physical scale λ (red line) as function of the

scale factor a. From Ref. [37].

The evolution of Hubble radius vs the 
evolution of a scale , the distance 
between two photons coming from last 
scattering surface 

λ

λ > rH =
1
H

→ λ outside the horizon .

λ < rH =
1
H

→ λ inside the horizon .



Cosmological Background
Inflation and the horizon problem (in few words)
Surface of last scattering and causally connected regions.  
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Fig. 18.1. Two views of the size of a comoving region within the observable Universe,
relative to the Hubble length (horizon scale). The comoving Hubble length 1/aH is de-
creasing during inflation and increases afterwards at least up to the present. (What happens
in the future depends on the nature of the dark energy, as discussed in Section 23.5.) The
upper panel shows the physical size of the region, the lower one its comoving size. The
vertical axis covers many powers of 10 in scale. The region starts well inside the horizon,
then crosses outside some time before the end of inflation, reentering long after inflation is
over.

the comoving region that will become the observable Universe actually becomes
smaller during inflation. This is illustrated in Figure 18.1.

The condition for inflation can also be written

INFLATION ⇐⇒ − Ḣ

H2 < 1 . (18.3)

On the usual assumption that H decreases with time, inflation is an era when
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Fig. 18.1. Two views of the size of a comoving region within the observable Universe,
relative to the Hubble length (horizon scale). The comoving Hubble length 1/aH is de-
creasing during inflation and increases afterwards at least up to the present. (What happens
in the future depends on the nature of the dark energy, as discussed in Section 23.5.) The
upper panel shows the physical size of the region, the lower one its comoving size. The
vertical axis covers many powers of 10 in scale. The region starts well inside the horizon,
then crosses outside some time before the end of inflation, reentering long after inflation is
over.

the comoving region that will become the observable Universe actually becomes
smaller during inflation. This is illustrated in Figure 18.1.

The condition for inflation can also be written

INFLATION ⇐⇒ − Ḣ

H2 < 1 . (18.3)

On the usual assumption that H decreases with time, inflation is an era when

rH = ( 1
H ) RH = ( 1

aH )
Hubble radius Comoving Hubble radius



Cosmological Background
Inflation and the horizon problem (in few words)
Inflation and the horizon problem. In order to solve the problem with 
causality posed by the horizon problem, we should have a shrinking 
Hubble radius in the past, so: 

d
dt ( 1

aH ) < 0 ⇔ ··a > 0.

··a
a

= ·H + H2 = −
4πG

3
(ρ + 3p) ⇒ (ρ + 3p) < 0 ⇒ ω < −

1
3

.

From Friedmann equations: 

Inflation defined in terms of the evolution of the scale factor. 

d
dt

RH < 0 →
d
dt ( 1

aH ) < 0 → ··a > 0.



Single field inflation
Inflation driven by a single scalar field

S = ∫ d4x −g [
M2

pl

2
R +

1
2

∂μϕ∂μϕ − V(ϕ)]

reality, inflation ends at some finite time, and the approximation (60) although valid at early times,
breaks down near the end of inflation. So the surface ⌧ = 0 is not the Big Bang, but the end of
inflation. The initial singularity has been pushed back arbitrarily far in conformal time ⌧ ⌧ 0, and
light cones can extend through the apparent Big Bang so that apparently disconnected points are
in causal contact. In other words, because of inflation, ‘there was more (conformal) time before
recombination than we thought’. This is summarized in the conformal diagram in Figure 9.

6 The Physics of Inflation

Inflation is a very unfamiliar physical phenomenon: within a fraction a second the universe grew
exponential at an accelerating rate. In Einstein gravity this requires a negative pressure source or
equivalently a nearly constant energy density. In this section we describe the physical conditions
under which this can arise.

6.1 Scalar Field Dynamics

reheating

Figure 10: Example of an inflaton potential. Acceleration occurs when the potential energy of
the field, V (�), dominates over its kinetic energy, 1

2
�̇

2. Inflation ends at �end when the
kinetic energy has grown to become comparable to the potential energy, 1

2
�̇

2 ⇡ V . CMB
fluctuations are created by quantum fluctuations �� about 60 e-folds before the end of
inflation. At reheating, the energy density of the inflaton is converted into radiation.

The simplest models of inflation involve a single scalar field �, the inflaton. Here, we don’t
specify the physical nature of the field �, but simply use it as an order parameter (or clock) to
parameterize the time-evolution of the inflationary energy density. The dynamics of a scalar field
(minimally) coupled to gravity is governed by the action

S =
Z

d4
x
p
�g


1
2
R +

1
2
g

µ⌫
@µ� @⌫�� V (�)

�
= SEH + S� . (61)

The action (61) is the sum of the gravitational Einstein-Hilbert action, SEH, and the action of a
scalar field with canonical kinetic term, S�. The potential V (�) describes the self-interactions of the

31

Illustration of an inflaton potential



Inflaton dynamics

S = ∫ d4x −g [
M2

pl

2
R +

1
2

∂μϕ∂μϕ − V(ϕ)]
δS
δϕ

:
1
−g

∂μ ( −g∂μϕ) + ∂ϕV = 0.

Equation of motion for ϕ

Energy-Momentum tensor

−
2
−g

δS
δgμν

: T(ϕ)
μν = ∂μϕ∂νϕ − gμν ( 1

2
∂αϕ∂αϕ + V(ϕ)) .

Rμν −
1
2

gμνR = 8πGT(ϕ)
μν → H2 =

8πG
3

ρϕ, ·H + H2 = −
4πG

3
(ρϕ + 3pϕ) .

Gravitational field equation

Single field inflation



Inflaton dynamics

··ϕ + 3H ·ϕ + ∂ϕV = 0.

Homogeneous field . A homogeneous scalar field  
behaves like a perfect fluid and support the inflationary evolution  

ϕ ϕ(x, t) = ϕ(t)

Pressure, energy density and continuity equation

T(ϕ)
00 = ρϕ = 1

2
·ϕ2 + V(ϕ),

T(ϕ)
ii = pϕ = 1

2
·ϕ2 − V(ϕ),

ωϕ =
pϕ

ρϕ
=

1
2

·ϕ2 − V(ϕ)
1
2

·ϕ2 + V(ϕ)
.

Gravitational field equation/ Friedman equations 

H2 =
8πG

3 ( 1
2

·ϕ2 + V(ϕ)),

·H + H2 = −
4πG

3
(1 + 3ωϕ)( 1

2
·ϕ2 + V(ϕ)) .

Single field inflation

dρϕ

dt
+ 3Hρϕ(1 + ωϕ) = 0.



Slow roll inflation
Definition of slow roll parameter ϵ

··a
a

= −
1
2

H2(1 + 3ωϕ) = H2(1 − ε), ε ≡
3
2

(1 + ωϕ) =
1
2

·ϕ2

H2
= −

·H
H2

.

Single field inflation

ε ≡ −
·H

H2
= −

d ln H
dN

.

Accelerated expansion in terms of slow roll parameter
··a > 0 ⇔ ε < 1

ωϕ =
pϕ

ρϕ
=

1
2

·ϕ2 − V(ϕ)
1
2

·ϕ2 + V(ϕ)
→ − 1 → V(ϕ) ≫ ·ϕ2 .

de Sitter limit , .ωϕ → − 1 ε → 0

Definition of second slow roll parameter .  is small enough to 
sustain accelerated expansion 

η ··ϕ

| ··ϕ | ≪ {3H ·ϕ, ∂ϕV} . η ≡
··ϕ

H ·ϕ
= ε −

1
2ε

dε
dN



Slow roll inflation
Potential slow roll parameters

Single field inflation

ϵV ≡
M2

pl

2 (
Vϕ

V )
2

, ηV ≡ M2
pl

Vϕϕ

V
.

Using Friedmann equations, slow roll parameters can also be seen as 
conditions on the shape of the potential

Relations between both set of parameters ε ≈ ϵV, η = ηV − ϵV .
Exponential expansion 

·ϕ ≈ −
Vϕ

3H
, H2 ≈

8πG
3

V(ϕ) ≈ const . →
·a
a

= H → a ≈ a0eHt .

End of inflation and number of e-folds

ε ≈ ϵV(ϕend) = 1 → N(ϕ) = ln ( aend

a ) = ∫
tend

t
Hdt = ∫

ϕend

ϕ
H

dϕ
·ϕ

N(ϕ) = ∫
ϕend

ϕ
H

dϕ
·ϕ

≈ − 8πG∫
ϕend

ϕ

V
Vϕ

dϕ ≈
1

Mpl ∫
ϕ

ϕend

dϕ
2ϵV

.

M2
pl ≡

1
8πG

.

Ntot = ln ( aend

astart ) ≳ 60

Enough inflation to 
solve IC problems



Scalar, vector and tensor degrees of freedom
Matter perturbations and metric perturbations

Inflationary perturbations

The Einstein equations couple matter perturbations to the metric 
perturbations

δGμν = 8πGδT(ϕ)
μν .

δϕ → δTμν → δgμν → δϕ .

ϕ(x, t) = ϕ0(t) + δϕ(x, t)



Inflationary perturbations
Cosmological Perturbations

We can study perturbations around a homogeneous background:

�(x , t) = �(t) + ��(x , t), gµ⌫(x , t) = gµ⌫(t) + �gµ⌫(t)

ds
2 = �(1 + 2�)dt2 + 2aBi dx

i
dt + a

2 [(1 � 2 )�ij + Eij ] dx
i
dx

j

Scalar, vector, tensor decomposition:

Bi = @iB � Si , @ i
Si = 0

Eij = 2@ijE + 2@(iFj) + hij , @ i
Fi = 0, @ i

hij = 0.

Coordinate transformation: t ! t + ↵, x
i ! x

i + �ij�0
j
Scalar metric

and matter transformations:

� ! �� ↵̇, B ! B + a
�1↵ � a�̇

E ! E � �,  !  + H↵

�⇢ ! �⇢ � ⇢̇↵, p ! �p � ṗ↵

Juan P. Beltrán Almeida (UAN) Inflation and the Origin of LSS December 9, 2014 13 / 20



Inflationary perturbations
Gauge invariant variables

Gauge invariant variables.

Curvature perturbation on uniform-density hypersurfaces

�⇣ ⌘  +
H

⇢̇
�⇢ ⇡  +

H

�̇
�� (Slow-roll)

Comoving curvature perturbation:

R ⌘  � H

⇢ + p
�q ⇡  +

H

�̇
�� (Slow-roll)

�⇣ = R

for slow-roll and on super horizon scales k ⌧ aH.
We can calculate statistical properties in the form of correlation functions
(power spectrum, bispectrum, etc.) of these gauge variables!

Juan P. Beltrán Almeida (UAN) Inflation and the Origin of LSS December 9, 2014 14 / 20



Inflationary perturbations
Correlation Functions. Statistical Properties of

Cosmological Perturbations.

Power spectrum.

< RkRk0 >= (2⇡)3�(k + k
0)PR(k), �2

R ⌘ k
3

2⇡2
PR(k)

ns � 1 ⌘ d ln�2

R
d ln k

, ↵s ⌘ dns

d ln k

Power law spectrum

�2

R = As(k⇤)

✓
k

k⇤

◆ns(k⇤)�1+
1

2
↵s(k⇤) ln(k/k⇤)+...

Juan P. Beltrán Almeida (UAN) Inflation and the Origin of LSS December 9, 2014 15 / 20



Inflationary perturbations
Scalar Perturbations.

Scalar action.

S =

Z
d
4
x
p

�g


1

2
R � 1

2
(r�)2 � V (�)

�

Expanding up to 2nd order in R, (this is a long exercise of integration by
parts) we get:

S(2nd order) =
1

2

Z
d
4
x a

3
�̇2

H2

h
Ṙ2 � a

�2(@iR)2
i

Mukhanov action

Defining v ⌘ zR, z ⌘ a
2 �̇2

H2 = 2a2" and we get the action:

S =
1

2

Z
d⌧ d

3
x


(v 0)2 + (@iv)

2 +
z

00

z
v
2

�
, 0 = @⌧

Juan P. Beltrán Almeida (UAN) Inflation and the Origin of LSS December 6, 2022 16 / 20



Inflationary perturbations
ADM formalism

ds2 = − N2dt2 + gij(dxi + Nidt)(dxj + Njdt), N → lapse, Ni → shift .

uμ

hμν
S =

1
2 ∫ d4x −g (NR(3) − 2NV + N−1(EijEij − E2)+

+N−1( ·ϕ − Ni∂iϕ)2 − Ngij∂iϕ∂jϕ − 2V) .

Eij ≡
1
2 ( ·gij − ∇iNj − ∇j Ni), E = Ei

i .

Kij = N−1Eij . Extrinsic curvature 
of a section

Exercise 14 (ADM Action) Confirm Eqn. (A.143).

B.2.1 Comoving Gauge

To fix time and spatial reparameterizations we choose the following gauge for the dynamical fields
gij and �

�� = 0 , gij = a
2[(1� 2R)�ij + hij ] , @ihij = h

i

i = 0 . (A.145)

In this gauge the inflaton field is unperturbed and all scalar degrees of freedom are parameterized
by the metric fluctuation R(t,x). Geometrically, R measures the spatial curvature of constant-�
hypersurfaces, R

(3) = 4r2R/a
2. An important property of R is that it remains constant outside

the horizon. This allows us in Lecture 2 to restrict our computation to correlation functions at
horizon crossing.

B.2.2 Constraint Equations

The ADM action (A.143) implies the following constraint equations for the Lagrange multipliers N

and N
i

ri[N�1(Ei

j � �i

jE)] = 0 , (A.146)

R
(3) � 2V �N

�2(EijE
ij � E

2)�N
�2
�̇

2 = 0 . (A.147)

Exercise 15 (Constraint Equations) Derive the constraint equations (A.146) and (A.147) from
the ADM action (A.143).

To solve the constraints, we split the shift vector Ni into irrotational (scalar) and incompressible
(vector) parts

Ni ⌘  ,i + Ñi , where Ñi,i = 0 , (A.148)

and define the lapse perturbation as
N ⌘ 1 + ↵ . (A.149)

The quantities ↵,  and Ñi then admit expansions in powers of R,

↵ = ↵1 + ↵2 + . . . ,

 =  1 +  2 + . . . ,

Ñi = Ñ
(1)

i
+ Ñ

(2)

i
+ . . . , (A.150)

where, e.g. ↵n = O(Rn). The constraint equations may then be set to zero order-by-order.

Exercise 16 (First-Order Solution of Constraint Equations) Show that at first order Eqn. (A.147)
implies

↵1 =
Ṙ
H

, @
2
Ñ

(1)

i
= 0 . (A.151)

With an appropriate choice of boundary conditions one may set Ñ
(1)

i
⌘ 0. Show that at first order

Eqn. (A.146) implies

 1 = �R
H

+
a

2

H
✏v @

�2Ṙ , (A.152)

where @�2 is defined via @�2(@2
�) = �.

145

Hamiltonian 
constraints



Inflationary perturbations
ADM formalism
First order solution of the constraint equations

Exercise 14 (ADM Action) Confirm Eqn. (A.143).

B.2.1 Comoving Gauge

To fix time and spatial reparameterizations we choose the following gauge for the dynamical fields
gij and �

�� = 0 , gij = a
2[(1� 2R)�ij + hij ] , @ihij = h

i

i = 0 . (A.145)

In this gauge the inflaton field is unperturbed and all scalar degrees of freedom are parameterized
by the metric fluctuation R(t,x). Geometrically, R measures the spatial curvature of constant-�
hypersurfaces, R

(3) = 4r2R/a
2. An important property of R is that it remains constant outside

the horizon. This allows us in Lecture 2 to restrict our computation to correlation functions at
horizon crossing.

B.2.2 Constraint Equations

The ADM action (A.143) implies the following constraint equations for the Lagrange multipliers N

and N
i

ri[N�1(Ei

j � �i

jE)] = 0 , (A.146)

R
(3) � 2V �N

�2(EijE
ij � E

2)�N
�2
�̇

2 = 0 . (A.147)

Exercise 15 (Constraint Equations) Derive the constraint equations (A.146) and (A.147) from
the ADM action (A.143).

To solve the constraints, we split the shift vector Ni into irrotational (scalar) and incompressible
(vector) parts

Ni ⌘  ,i + Ñi , where Ñi,i = 0 , (A.148)

and define the lapse perturbation as
N ⌘ 1 + ↵ . (A.149)

The quantities ↵,  and Ñi then admit expansions in powers of R,

↵ = ↵1 + ↵2 + . . . ,

 =  1 +  2 + . . . ,

Ñi = Ñ
(1)

i
+ Ñ

(2)

i
+ . . . , (A.150)

where, e.g. ↵n = O(Rn). The constraint equations may then be set to zero order-by-order.

Exercise 16 (First-Order Solution of Constraint Equations) Show that at first order Eqn. (A.147)
implies

↵1 =
Ṙ
H

, @
2
Ñ

(1)

i
= 0 . (A.151)

With an appropriate choice of boundary conditions one may set Ñ
(1)

i
⌘ 0. Show that at first order

Eqn. (A.146) implies

 1 = �R
H

+
a

2

H
✏v @

�2Ṙ , (A.152)

where @�2 is defined via @�2(@2
�) = �.

145

Exercise 14 (ADM Action) Confirm Eqn. (A.143).

B.2.1 Comoving Gauge

To fix time and spatial reparameterizations we choose the following gauge for the dynamical fields
gij and �

�� = 0 , gij = a
2[(1� 2R)�ij + hij ] , @ihij = h

i

i = 0 . (A.145)

In this gauge the inflaton field is unperturbed and all scalar degrees of freedom are parameterized
by the metric fluctuation R(t,x). Geometrically, R measures the spatial curvature of constant-�
hypersurfaces, R

(3) = 4r2R/a
2. An important property of R is that it remains constant outside

the horizon. This allows us in Lecture 2 to restrict our computation to correlation functions at
horizon crossing.

B.2.2 Constraint Equations

The ADM action (A.143) implies the following constraint equations for the Lagrange multipliers N
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Ñ

(1)

i
= 0 . (A.151)

With an appropriate choice of boundary conditions one may set Ñ
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The quantities ↵,  and Ñi then admit expansions in powers of R,

↵ = ↵1 + ↵2 + . . . ,

 =  1 +  2 + . . . ,
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Ñ

(1)

i
= 0 . (A.151)

With an appropriate choice of boundary conditions one may set Ñ
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and define the lapse perturbation as
N ⌘ 1 + ↵ . (A.149)
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Ñi = Ñ
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Inflationary perturbations
PS of Scalar Perturbations.

We can go to Fourier space:

v(⌧, x) =

Z
d
3
x

(2⇡)3
vk(⌧)e

i~k·~x ,

so, the e.o.m becomes:

v
00
k +

✓
k
2 � z

00

z

◆
vk = 0.

In de Sitter space z
00

z
= a

00

a
= 2

⌧2

Solution and PS.
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◆

The PS of the variable  = a
�1

v is:

<  k  k0 >= (2⇡)3�(k + k
0)

|vk(⌧)2|
a2

= (2⇡)3�(k + k
0)
H

2

2k3
(1 + k

2⌧2)

Mukhanov action

Defining v ⌘ zR, z ⌘ a
2 �̇2

H2 = 2a2" and we get the action:

S =
1

2

Z
d⌧ d3

x


(v 0)2 + (@iv)

2 +
z

00

z
v
2

�
, 0 = @⌧
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Inflationary perturbations
PS of R.

R = H

�̇
 at the time of horizon crossing a(t⇤)H(t⇤) = k:

< Rk Rk0 >= (2⇡)3�(k + k
0)
H

2
⇤

2k3
H

2
⇤
�̇2⇤

, �2

R(k) =
H

2
⇤

2k3
H

2
⇤
�̇2⇤

.

For slow-roll inflation:

�2

s (k) ⇡ 1

24⇡2
V

M2

Pl

1

✏⇤v
, ns � 1 = 2⌘⇤

v � 6✏⇤v .

Nearly scale invariant spectrum!
We can do the same for tensor perturbations and obtain:

�2

t (k) ⇡ 2

3⇡2
V

M2

Pl

, nt = �2⌘⇤
v .

Additionally, rt ⌘ �2
t (k)

�2

2
(k)

= 16✏⇤v = �8nt .
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Inflationary perturbations
Planck 2018 results for r and ns



Final remarks

1. Inflation is a theoretical proposal that solves several 
problems of the unusual properties of the early universe  

2. Inflationary perturbations can be calculated at linear 
regime for super horizon scales limit and its result gives us 
information about the statistical distribution of observed 
temperature fluctuations at the CMB.    

3. There are several approaches and techniques to evaluate the 
evolution of cosmological perturbations.   

4. Cosmological perturbation theory is also used at different 
scales from those involved in inflation, for instance at 
large scales during cold dark matter dominated epoch.   


