### Universidad de Ios Andes Colombia



### UNIVERSIDAD DE ANTIOQUIA

Facultad de Ciencias Exactas y Naturales

Dark Matter production in non-standard cosmologies Valentina Franco Velásquez Advisors: Óscar Zapata and Nicolás Bernal VII Uniandes Particle Physics School. Bogotá, 2022

# Outline

#### 1. Generalities

- Standard cosmologies
- Non-standard cosmologies
- 2. Research project
- 3. References

# Standard Cosmology

### 'The simplest model that provides a reasonably good account of several properties of the universe.'

\*The current standard cosmology corresponds to the  $\Lambda CDM$  model.

# ACDM model

It is successful explaining:

- The existence and structure of the CMB.
- The large-scale structure in the distribution of galaxies.
- The observed abundances of H (<sup>2</sup>H), He y Li.
- The accelerating expansion of the universe.

\*General relativity is the correct theory of gravity on cosmological scales.

# ΛCDM model

### A universe made of...

Λ : Cosmological constant
 CDM : Cold Dark Matter
 Matter : Barions



# $\Lambda CDM$ model

Radiation
$$\rightarrow \rho_{rad}, w = 1/3$$
 $p = w\rho$ Matter $\rightarrow \rho_m, w = 0$  $\rho \propto a^{-3(1+w)}$ Cos. Constant $\rightarrow \rho_{\Lambda}, w = -1$  $\rho \propto a^{-3(1+w)}$ 

'During its evolution, the universe goes through several stages characterized by definite processes and the dominance of a component over the rest.'

# ΛCDM model

 $\rho \propto a^{-3(1+w)}$ 

'During its evolution, the universe goes through several stages characterized by definite processes and the dominance of a component over the rest.'



# ΛCDM model

POSSESS SOME PROBLEMS...

The **horizon** problem The **flatness** problem The **monopole** problem AND SOME ANOMALIES...

**Baryonic asymmetry** The nature of **Dark Energy** The nature of **Dark Matter** And so on...

\*They are solved if it is considered inflation



# Non-Standard Cosmology

'Any physical cosmological model of the universe that is proposed as an alternative to the current standard model of cosmology'

\*In this research project, we are interested in models in which some stage in the history of the early universe is modified.

# Non-Standard Cosmology

\*In this research project, we are interested in models in which some stage in the history of the early universe is modified.



We have a gap in our understanding of the early universe!



# Cold Dark Matter

#### Non-baryonic

Cold: Non- relativistic.

**Dark:** Interacts very weakly with ordinary matter and electromagnetic radiation.

# Cold dark matter candidates

- Interacts via **gravity and** any **other force** which is as weak as or weaker than the weak nuclear force.
- Thermally produced in the early Universe.



#### 10/19

# Detection of WIMPs

- 1. Direct detection
- 2. Indirect detection
- 3. Production in colliders

So restrictive upper limits for WIMPs cross-sections!



#### In summary

- 1. The ΛCDM model faces several challenges.
- 2. Due to the limits imposed by experiments, the WIMP is practically no longer considered a DM candidate.

MIR

One can either consider an alternative production mechanism or a **non-standard cosmology** 

#### To study the simplest WIMP-like DM model in the frame of a nonstandard cosmology.





**Figure 1.** Parameter space (in white) that could reproduce the observed DM abundance via the WIMP mechanism with non-standard cosmologies.

P. Arias, et al., Reconstructing non-standard cosmologies with dark matter, Journal of Cosmology and Astroparticle Physics 2019 (10), 047-047.

# Standard to Non-Standard Cosmology

**Decoupled** system of **Boltzmann** differential equations. **Coupled** system of **Boltzmann** differential equations.

$$\frac{d\rho_{\phi}}{dt} + 3(1+w)H\rho_{\phi} = 0 \qquad \qquad \frac{d\rho_{\phi}}{dt} + 3(1+w)H\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi}$$
$$\frac{ds}{dt} + 3Hs = 0 \qquad \qquad \qquad \frac{ds}{dt} + 3Hs = c(T)\Gamma_{\phi}\rho_{\phi}$$
$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{eq}^2) \qquad \qquad \frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{eq}^2)$$

**Thermal production of Dark Matter** 

w = 0

ournal of Cosmology and Astroparticle Physics

ournal of Cosmology and Astroparticle Physics

# Reconstructing non-standard cosmologies with dark matter

#### Paola Arias,<sup>*a*</sup> Nicolás Bernal,<sup>*b*</sup> Alan Herrera<sup>*b*,*c*</sup> and Carlos Maldonado<sup>*a*</sup>

<sup>a</sup>Departmento de Física, Universidad de Santiago de Chile, Casilla 307, Santiago, Chile
<sup>b</sup>Centro de Investigaciones, Universidad Antonio Nariño, Carrera 3 Este # 47A-15, Bogotá, Colombia
<sup>c</sup>Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, U.S.A.

 $\label{eq:constraint} \begin{array}{l} \textbf{E-mail: } paola.arias.r@usach.cl, nicolas.bernal@uan.edu.co, aherrer9@ur.rochester.edu, carlos.maldonados@usach.cl \\ \end{array}$ 

Received June 17, 2019 Revised September 5, 2019 Accepted October 3, 2019 Published October 18, 2019



# Increasing temperature toward the completion of reheating

#### Raymond T. Co,<sup>a</sup> Eric Gonzalez<sup>a</sup> and Keisuke Harigaya<sup>b</sup>

<sup>a</sup>Leinweber Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109, U.S.A.
<sup>b</sup>School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, U.S.A.

E-mail: rtco@umich.edu, ericgz@umich.edu, keisukeharigaya@ias.edu

Received July 21, 2020 Accepted October 5, 2020 Published November 19, 2020



Temperature

$$\Gamma_{\phi}(a,T) = cH_{end} \left(\frac{a}{a_{end}}\right)^{k} \left(\frac{T}{T_{end}}\right)^{q}; \quad H_{end} = \frac{\pi T_{end}^{2}}{3M_{pl}} \sqrt{\frac{g_{*}(T_{end})}{10}}; \quad \kappa = \frac{\rho_{\phi}}{\rho_{R}}\Big|_{T=m}$$
Scale Factor

### There are five free parameters:

$$\Gamma_{\phi}(a,T) = cH_{end} \left(\frac{a}{a_{end}}\right)^k \left(\frac{T}{T_{end}}\right)^q$$

Depending on **k** and **n**, the thermal history of the universe is modified.



Non-Standard cosmology with  $\Gamma_{\phi} = \Gamma_{\phi}(t)$ 

 $T_{end} = 7E - 03$  [GeV], k = 9.0E + 00,  $\langle \sigma | v | \rangle = 1E - 11$  [GeV<sup>-2</sup>], q = 2

$$\Gamma_{\phi}(a,T) = cH_{end} \left(\frac{a}{a_{end}}\right)^k \left(\frac{T}{T_{end}}\right)^q$$

10<sup>1</sup>

1014 --- T<sub>E</sub>  $\rho_{\phi}$ 1013 T<sub>N.E</sub>  $\rho_{R,E}$  $[GeV^4]$ T × (a/a<sub>0</sub>) [GeV]  $\rho_{R,N.E}$ 1012 k = 0; q = 2 1011  $\rho \times (a/a_0)^4$ 1010 10<sup>9</sup> 10<sup>2</sup> 10<sup>8</sup> 107 10<sup>2</sup> 104 10-4 10º 10<sup>2</sup> 104  $10^{-4}$ 10-2 10<sup>0</sup> 106 10<sup>8</sup> 10-2 10<sup>6</sup> 10<sup>8</sup>  $m = 100 \ [GeV], \ \langle \sigma v \rangle = 1 \times 10^{-11} \ [GeV^{-2}], \ q = 2$  $a/a_0$  $a/a_0$ --- H<sub>E</sub> Y = 3.71E - 1210-3 10-6 10<sup>3</sup> — H<sub>N.E</sub> 10-9 BBN 10-5 10² 10-12  $T_c = T_{fo}$  $s/u = \lambda^{10^{-7}}$ 10<sup>1</sup> **(b)**  $H^{10^{-15}}_{10^{-18}}$  $T_{eq} = T_{fo}$ × 10°  $T_{end} = T_{fo}$ 10-21 10-11 10-1 10-24 10-13 10-2 10-27  $\rho_{\phi} < \rho_R$ 10-30 10-15 10<sup>2</sup>  $10^{4}$ 106 10<sup>2</sup> 10<sup>3</sup>  $10^{4}$ 10<sup>5</sup> 106 10-1 10-2 10<sup>0</sup> 10<sup>8</sup> 10<sup>0</sup> 10<sup>1</sup> 10º  $10^{-4}$ 10-2 x = m/T $a/a_0$ T<sub>end</sub> [GeV]



# Referencias

[1] P. Arias, N. Bernal, A. Herrera, and C. Maldonado, Reconstructing non-standard cosmologies with dark matter, Journal of Cosmology and Astroparticle Physics 2019 (10), 047-047.

[2] R. T. Co, E. Gonzalez, and K. Harigaya, Increasing temperature toward the completion of reheating, Journal of Cosmology and Astroparticle Physics 2020 (11), 038–038.

[3] Wikipedia contributors, Lambda-cdm model — Wikipedia, the free encyclopedia (2022), [Online; accessed 28-November-2022].

[4] Wikipedia contributors, Non-standard cosmology — Wikipedia, the free

# Referencias

[5] R. Allahverdi, M. A. Amin, A. Berlin, N. Bernal, C. T. Byrnes, M. S. Delos, A. L. Erickcek, M. Escudero, D. G. Figueroa, K. Freese, and et al., The first three seconds: a review of possible expansion histories of the early universe, The Open Journal of Astrophysics 4, 10.21105/astro.2006.16182 (2021).

[6] Chatterjee, Chayan & Majumdar, Debasish & Chatterjee, Suchetana. (2019). Dark Matter Self Interactions and its Impact on Large Scale Structures.

[7] B. Barman, N. Bernal, Y. Xu, and O. Zapata, Ultraviolet freeze-in with a time-dependent inflaton decay (2022).

[8] Wikipedia contributors, Weakly interacting massive particle — Wikipedia, the free encyclopedia (2022), [Online; accessed 29-November-2022].

(2022), [Online; accessed 28-November-2022].