Atmospheric Muon Flux Measurement Near Earth's Equatorial Line

Cristian Borja*, Carlos Ávila, Gerardo Roque, Manuel Sánchez <u>cm.borja10@uniandes.edu.co*</u>

Physics Department (High Energy Physics Laboratory) Universidad de los Andes

Atmospheric Muons

- Free Source of Radiation (No health hazard)
- Higher flux at Sea Level
- Lifetime 2.2μs. Relativistic factor γ≈20. Travel 24 km (Produced at 15km height).
- Mass ~200me (Energy loss proportional to 1/m²).

Muography

Alvarez, Anderson, et al. Search for Hidden Chambers in the Pyramids: The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption. *Science* 1970 167, 832–839. <u>https://doi.org/10.1126/science.167.3919.832</u>.

Tanaka Hiroyuki K. M. Japanese volcanoes visualized with muography. Phil. Trans. R. Soc. 2018 A.3772018014220180142 https://doi.org/10.1098/rsta.2018.0142

Other Applications

Left, Blanpied (2015), Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials Mid., Checchia (2016), Review of possible applications of Cosmic Muon Tomography. doi:10.1088/1748-0221/11/12/C12072 Right, Priedhorsky (2003), Detection of high-Z objects using multiple scattering of cosmic ray muons http://dx.doi.org/10.1063/1.1606536

Collaborations

[France] DIAPHANE

Development and application of muon tomography for volcanology studies and monitoring

Tomography with Atmospheric Muons from Volcanoes (TOMUVOL) Muon Radiography of Vesuvius (MURAVES)

Joint measurement of the transmittance of the inner structure of the Puy de Dôme in France (2018)

[Japan]

Sakurajima Muographic Observatory (SMO)

Aims to monitor the active volcano Sakurajima in Kyushu, Japan

[Italy] Muography of Etna Volcano (MEV)

Developing detectors intended for studying volcanoes in collaboration with geoscientists, engineers, and physicist

Muon Telescope (Uniandes)

Photoelectric Effect

Electronic System

Detector Efficiency

Optimal Operational Parameters

Detector Performance

Detector Performance

Detector Performance

Muon Flux vs. Zenith Angle

What 's Next?

Further Information

Open Access Article

Atmospheric Muon Flux Measurement near Earth's Equatorial Line

by 🙁 Cristian Borja * † 🖂 🧟 Carlos Ávila †, 😵 Gerardo Roque 😳 and 😵 Manuel Sánchez * 🖂 🧿

Physics Department, Universidad de los Andes, Bogotá 111711, Colombia

- * Authors to whom correspondence should be addressed.
- [†] These authors contributed equally to this work.

Instruments 2022, 6(4), 78; https://doi.org/10.3390/instruments6040078

Received: 1 October 2022 / Revised: 11 November 2022 / Accepted: 15 November 2022 / Published: 22 November 2022

(This article belongs to the Special Issue Muography, Applications in Cosmic-Ray Muon Imaging)

Read the publication here!