What can Maxwell's demon do?

John Bechhoefer Simon Fraser Univ.

Tushar Saha

Jannik Ehrich

Joseph Lucero

David Sivak

FOUNDATIONAL QUESTIONS INSTITUTE

4th Workshop on Statistical Physics Univ. Nacional de Colombia, <u>Bogotá</u>, October 6, 2023

Outline

I. A "modern" Maxwell demon

II. Performance limits

- power extracted
- speed of directed motion

II. Measurement noise

- an unexpected phase transition, a sophisticated "cure"

III. Nonequilibrium environment

- more power & speed!
- applications?

g

х

Equilibrium

A modern Maxwell demon

4

Threshold

Basic concept

Fluctuating particle, in bath

Wait for an "up" fluctuation

Raise platform w/o work

Repeat cycle

Energy stored in gravitational potential

A modern Maxwell demon

Basic concept

Fluctuating particle, in bath

Wait for an "up" fluctuation

Raise platform w/o work

Repeat cycle

Energy stored in gravitational potential

Experimental realization using <u>optical tweezers</u>

Optical tweezers & feedback Experimental set up

Feedback algorithm

Ratchet on up fluctuation that exceeds threshold $X_{\rm T}$

Adjust feedback gain α so that <u>no work</u> is done by ratcheting

Adjust feedback gain α so that <u>no work</u> is done by ratcheting

Outline

I. A "modern" Maxwell demon

II. Performance limits

- power extracted
- speed of directed motion

II. Measurement noise

– an unexpected phase transition, a sophisticated "cure"

III. Nonequilibrium environment

- more power & speed!
- applications?

Parameter optimization

 \dot{F} = rate work is extracted and stored as gravitational potential energy

Theory for engine

Outline

I. A "modern" Maxwell demon

II. Performance limits

- power extracted
- speed of directed motion

II. Measurement noise

- an unexpected phase transition, a sophisticated "cure"

III. Nonequilibrium environment

- more power & speed!
- applications?

Noisy measurements

Noisy measurements

Recall need to reduce α to have zero trap work

Naive info engine stops working for SNR < SNR_c

Is α^* small or zero?

↔ is there a crossover or a phase transition?

Naive info engine stops working for SNR < SNR_c

 $\alpha * = 0$ is always a solution cannot find $\dot{W} < 0$ for $\alpha < \alpha_{\rm c}$

→ Phase transition at $SNR_c \approx 0.7$

Noisy measurements

Phase transition at $SNR_c \approx 0.7$

Noisy measurements

Phase transition at $SNR_c \approx 0.7$

Noisy measurements

Bias: If you see a particle <u>"at</u>" threshold, it's probably <u>below</u> it.

Bias \rightarrow reduce α to keep $\dot{W} = 0$ but need $\alpha \ge 0$.

Noisy measurements

The problem: Phase transition due to bias.

The solution: Bayesian filter info engine works for <u>all</u> SNR.

- Don't be naive: We know the dynamics!
- Use Bayes rule with dynamics prior to estimate x from past history {y}, without bias
- Technical implementation: <u>Kalman filter</u>, with <u>prediction</u> to remove time delay

Noisy measurements

Bayesian filter info engine works for all SNR

Outline

I. A "modern" Maxwell demon

II. Performance limits

- power extracted
- speed of directed motion

II. Measurement noise

– an unexpected phase transition, a sophisticated "cure"

III. Nonequilibrium environment

- more power & speed!
- applications?

higher *bandwidth* of noneq. fluctuations → more power

higher *amplitude* of noneq. fluctuations → more power

higher amplitude of noneq. fluctuations \rightarrow larger optimal mass

When is a ratchet better than dragging (match speeds)?

cf. Ehrich, Still, and Sivak, Phys. Rev. Research 2023

