LI, Morday
Outline
Morday: Ovenview

- What is control theory? Why? Apps?
- dynamies and dynamidal ayptems
- linearigation + lishear tysteno
- frequercy-dowain contud (PID)
- Tine-dowain control
- controllabbity, obsewability, duality
- obsenvers e output control

Juesday: Optinal contiol

- Paronatric $\vec{\rightarrow}$ Jogrargion (cole. veriationo)
- Bollram. + dyranic prog., LQR

Wedresday: Stochastic Cortiol

- Rolman fieters part 1
- Bayesian methods (Kalman filter, part 2)
- Overall reference
- Cambridge Univ. Press
- www. sfu.ca/Chaos
\rightarrow boole \rightarrow.CUP
+ exercises, solis
+ Math Appendix
- Any sufficiently odvarced technology is indistinguishable from magic."
- Arthur C. Clarke, 1973
- dynamics with a purpose
- profound implications
- rot just moth! (a way of thinning) purpose: - "intelligent design"
- volution (biology, technological)
- Control is "the hidden technology" (Karl Åstion 1999)
- engireered systems as "robust yet fragile" (Gob Doge)

Application

- Techrology \leftrightarrow better eppeinets for physicists
- Physics \leftrightarrow cotwol can clange physecial dyranies
(stabilizs unstabl pote (Pall tap)
- fundtrnartals of thermo.
quantion systems
- controe of complex networks
- Biology \leftrightarrow. lange seale (phyiologs)
- Anall seab (genatie regultion)
- sirgle-nol. contol
- evoluationg tine seclo (pop.contal)

Goals of contiol

- Regulotión
- Tradxing

Our fous

- Stete - state transitions
- Collective wotion syrchongation, oworming,...

- stabilization, vitual potentialo + porces, charge attractr,...

Jypes of control
$v(x) \backsim$

- passive: enengy landxape

$$
\downarrow \begin{aligned}
& v(x) \rightarrow p(x) \sim e^{\frac{v(x)}{\operatorname{len}_{3} T}} \\
& \underbrace{\rightarrow}_{\text {ie }} \text { chose } v(x) \text { to get desived } p(x) \\
& v=v(x, \lambda) \rightarrow p(x, z)
\end{aligned}
$$

- active: alter $p(x)$ by going out of oq.
\longrightarrow no sensors \leftarrow open loop or feedfouvond $V(x, \lambda(t)) \rightarrow p(x, \lambda(t)) \quad \lambda(t) \leftrightarrow "$ contril pas." \longrightarrow sensors \longleftrightarrow extra cost to moritor \downarrow
closed-loop on fodbock

$$
U(x, \lambda(x, t)) \rightarrow p(x, \lambda(x, t))
$$

- Gadgots (fluah toilet, governov...)
- Natural sys (chinate feadbacks...)

The Systems Point of View

- Control: dynamical systems $\dot{x}=f(x)$
+ inputs and outputs
u
y
Control $X \rightarrow$ internal states alstroct
system

$f(\cdot), g(\cdot) \rightarrow$ nonlinear functions (wovally goth)

$$
\frac{d x}{d x} \equiv \dot{x}=f(x, u) \quad y=h(x, u) \text { or } h(x)
$$

Linear systems

- easy, wi general methods
- rear fired point (static)
- rear trajectory (time dependent)

Near fixed point $\quad \dot{x}=f(x, u) \quad y=h(x, u)$

$$
\begin{array}{ccc}
f\left(x_{0}, u_{0}\right)=0 & h\left(x_{0}, u_{0}\right)=y_{0} \\
x \equiv x_{0}+x_{1}(t) & u \equiv u_{0}+u_{1}(t) & y^{\Sigma}=y_{0}+y_{1}(t) \quad\left\{x_{1}, u_{1}, y_{\}}\right\} \text {stale }
\end{array}
$$

Tag lon: $\quad \dot{x}_{1}=f\left(x_{0}+x_{1}, u_{0}+u_{1}\right) \approx f\left(x_{0}, u_{0}\right)+\left.\frac{\partial f}{\partial x}\right|_{x_{0}, u_{0}} x_{1}+\left.\frac{\partial f}{\partial u}\right|_{x_{0}, h_{0}}+\cdots$

$$
\begin{aligned}
& y_{0}+y_{1}=h\left(x_{0}+x_{1}, u_{0}+u_{1}\right)=h\left(x_{0}, u_{0}\right)+\left.\frac{\partial h}{\partial x}\right|_{x_{0} u_{0}} x_{1}+\left.\frac{\partial h}{\partial u}\right|_{x_{0}, u_{0}} u_{1} \\
& A=\frac{\partial f}{\partial x} \quad B=\frac{\partial f}{\partial u} \quad C=\frac{\partial h}{\partial x} \quad D=\frac{\partial h}{\partial u} \quad \text { all at }\left(x_{0}, u_{0}\right) \\
& \longrightarrow \quad \dot{x}=A x+B u, \quad y=C x+D u
\end{aligned}
$$

Ex: Pendulum

$$
\ddot{\theta}+\sin \theta=\tau(t)
$$

- scaled (inv.) time by $\omega_{0}=\sqrt{9 / l}$, etc.
state $x=\binom{\theta}{\dot{\theta}}$ input $u=\tau \quad$ (torque) output $y=\theta$ (angle)

$$
\rightarrow \quad \dot{x}=\frac{d}{d t}\binom{x_{1}}{x_{2}}=\binom{x_{2}}{-\sin x_{1}+u}=f(x, u)
$$

Fixed points: $f\left(x^{*}\right)=0 \rightarrow \quad x_{2}=0, \sin x_{1}=0, u=0$

$$
\left.\frac{d}{d x}\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
A \\
0 \\
1 \\
-1
\end{array} 0\right)\binom{x_{1}}{x_{2}}+\begin{array}{c}
B \\
0 \\
1
\end{array}\right) u \quad y=(100)\binom{x_{1}}{x_{2}}+0
$$

Frequency-dormin andlysis
Transfer furctions (dyramical response)

$$
0 \xrightarrow[i n]{u(s)} G(s) \xrightarrow[\text { out }]{y(s)} 0 \quad G(s)=\frac{y(s)}{u(s)} \quad y(s)=\int_{0}^{\infty} d t \cdot y(t) e^{-s t}
$$

- intuitive approoch for lirear, tire -invaiart (LTI) oystemo
- leads to propotional_integral-derivativ (PID) contre
- Leveloped (mootly) in US 1920-1960 (Bell Jobs)
- what experimentalists ard engineers use...

Time - donsin Control
Recall: state vector $x(t) \quad \dot{x}=f(x, m) \quad y=h(x, w)$

$$
\dot{x}=A x+B u, \quad y=C_{x}+D_{w}
$$

$$
A=\left.\partial_{x} f\right|_{x_{0}, u_{0}}, B=\cdots
$$

Why study the timel dovain?
(1) easily bardle multiple miputs . multide outputs ("MIMO")
(2) berde roise in a natiual way
(3) leads to rove sophiticatel vies of dyranies, contul
(4) generalize to time varying and romerieas cased

$$
\dot{x}=A x+B u \rightarrow \quad x(t)=e^{A t} x(0)+\int_{0}^{t} d t^{\prime} e^{A\left(t-t^{\prime}\right)} \quad B u\left(t^{\prime}\right)
$$

4 matrix exponantion $e^{A t}=I+A t+A^{2} \frac{t^{2}}{2!}+\cdots$

Jine - domain regponse

- Impulse resporse $u=\delta(t)$

$$
y(s)=G(s) u(s) \quad \Rightarrow \quad y=G * u=G * \delta=G(t)
$$

$\Rightarrow G(t)=$ impuloe resporse function [Geen function in phypics] states : $X_{\text {imp }}(t)=0+\int_{0}^{t} d t^{\prime} e^{A\left(t-t^{\prime}\right)} B \delta\left(t^{\prime}\right)=e^{A t} B$

- Step response $u(t)=\theta(t)$.

Contrallability and obsevobility
Two "techrical" questions:

1) Given imput $(s) u(t)$, can you "contrul" all elemente oxx? \rightarrow Controllofility
2) Covien obsenvation (s) $y(t)$, can you "infe" dl elenato of x ? \rightarrow Obsewrability
I. Controllability

- begin w) siso case (scalar u,y; $x \in \mathbb{R}^{n}$)

Contallcble solution: $\exists u(t)$ makes sy evolve fim $x(0)=x_{0} \rightarrow x(\tau)=x_{T} \quad$ in finite tine τ

"Cortrollobl set: set of all x_{c} that can be reached from x_{0} in time τ

Controllable sypters: For any x_{0}, can reach any $x_{\tau} \in \mathbb{R}^{n}$ for some τ and $u(t) \quad \exists u: x_{0} \rightarrow x_{r}$
Ex 1: $\quad \dot{x}=-x+u(t) \quad$ Y os!
"inverse ergireerirg " $x d(t)=$ dosed tai

$$
\left.u(t)=\dot{x}_{d}(t)+x_{d} t t\right) \quad \text { (not usually pos.) }
$$

\rightarrow trajectory $x d$ tracked perfectly (asking more)

$$
\varepsilon_{x} 2: \quad\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
-\lambda_{1} & 0 \\
0 & -\lambda_{2}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{1}{0} u
$$

$$
u \rightarrow[975]
$$

$$
y\left\{\begin{array}{l}
\dot{x}_{1}=-\lambda_{1} x_{1}+u \\
\dot{x}_{2}=-\lambda_{2} x_{2}
\end{array}\right.
$$

$X_{2}(t)$ is completely unaffected by $u(t)$

$$
\rightarrow N_{0}!
$$

Ex 3: $u-\begin{aligned} & \text { sym }\end{aligned} \rightarrow \begin{aligned} & \text { same ingot to two } \\ & \text { idertied sym. }\end{aligned} \rightarrow N_{0} l_{0}$ identical sysop.

Ex ч: $\quad\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}-\lambda_{1} & 0 \\ 0 & -\lambda_{2}\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{1}{1} u(t) \rightarrow Q$? ye*! See neat page.
 * for $\lambda_{1} \neq \lambda_{2}$
4.1 Controllability of nearly identical systems. Consider two first-order systems with relaxation rates $\lambda_{1}=1$ and $\lambda_{2}=2$ that are driven by identical inputs (Eq. 4.7). Find an input $u(t)$ that takes the system from an initial state $\boldsymbol{x}_{0}=\binom{0}{0}$ to a final state $\boldsymbol{x}_{\tau}=\binom{1}{1}$, for $\tau=1$. Plot your solution. Hint: Try a step function with two parameters.

Solution.

We need to find a solution $x_{1}(1)=x_{2}(1)$ for

$$
\binom{\dot{x}_{1}}{\dot{x_{2}}}=\left(\begin{array}{cc}
-\lambda_{1} & 0 \\
0 & -\lambda_{2}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{1}{1} u(t) \quad \Longrightarrow \quad \begin{aligned}
& \dot{x_{1}}=-\lambda_{1} x_{1}+u \\
& \dot{x_{2}}=-\lambda_{2} x_{2}+u
\end{aligned}
$$

with initial state $(t=0)$ and final states $(\tau=1)$ given by

$$
x_{0}=\binom{x_{1}(0)}{x_{2}(0)}=\binom{0}{0}, \quad x_{\tau}=\binom{x_{1}(1)}{x_{2}(1)}=\binom{1}{1}
$$

There are an infinite number of ways to do this. A basic requirement is that there be two free parameters, since we are trying to fix two conditions ($x_{1}=x_{2}$ at $\tau=1$). One simple route is to use piecewise constant $u(t)$ functions. Let us try the simple form

$$
u(t)= \begin{cases}-u_{0} & 0<t<\tau_{0} \\ +u_{0} & \tau_{0}<t<1\end{cases}
$$

We can explicitly integrate the x_{1} and x_{2} equations (they are the same, substituting 2 for 1 , etc.) Denoting $x_{1,2}$ by $x(t)$ and $\lambda_{1,2}$ by λ, we get

$$
x(t)= \begin{cases}\frac{-u_{0}}{\lambda}\left(1-e^{-\lambda t}\right) & 0<t<\tau_{0} \\ \frac{u_{0}}{\lambda}\left(1-e^{-\lambda \tau_{0}}\right) \mathrm{e}^{-\lambda\left(t-\tau_{0}\right)}-\left(1-e^{-\lambda\left(t-\tau_{0}\right)}\right) & \tau_{0}<t<1\end{cases}
$$

After a certain amount of playing around, I found the solution illustrated at right, where $u_{0}=3.8$ and $\tau_{0}=0.405$ works for $\lambda_{1}=1$ and $\lambda_{2}=2$. Again, we emphasize that we use the same $u(t)$ for both $x_{1}(t)$ and $x_{2}(t)$. It is possible to find explicit algebraic solutions for u_{0} and τ_{0} in terms of $\lambda_{1,2}$, etc., but the main point here is to understand intuitively how a solution works and why it

Test for Controllability
"the recife"

1) Define controllability matrix $W_{c} \equiv\left(\begin{array}{ll}B & A B \\ A^{2} B & \cdots\end{array} A^{n-1} B\right)$ siso $\rightarrow B$ e column matrix $\Rightarrow W_{c}$ is $n \times n$
2) Wc invertible (dat $\left.W_{c} \neq 0\right) \Rightarrow\left\{A_{1} B\right\}$ controllable ε_{x} 2: $A=\left(\begin{array}{cc}-\lambda_{1} & 0 \\ 0 & -\lambda_{2}\end{array}\right) \quad B=\binom{1}{0}, A B=\binom{-\lambda_{1}}{0} \Rightarrow W_{c}=\left(\begin{array}{cc}1 & -\lambda_{1} \\ 0 & 0\end{array}\right) \Rightarrow \operatorname{det}=0 \Rightarrow N_{0}$

Ex 4: $\quad A=\left(\begin{array}{ll}-\lambda_{1} & \\ & -\lambda_{2}\end{array}\right) \quad B=\binom{1}{1} \quad A B=\binom{-\lambda_{1}}{-\lambda_{2}} \quad W_{c}=\left(\begin{array}{ll}1 & -\lambda_{1} \\ 1 & -\lambda_{2}\end{array}\right)$
set $W_{c}=\lambda_{1}-\lambda_{2} \Rightarrow$ controllable if $\lambda_{1} \neq \lambda_{2}$
Why it worlas

1) Can set $x_{0}=0$ (by defining $\left.x_{\tau} \rightarrow x_{\tau}-e^{A \tau} x_{0}\right)$
2) Cayley-Hamilton: matrix A obeys its $n^{\text {th }}$-order characteristic equation
$\Rightarrow A_{A t}^{l}$ can be rer-expressel as $\theta(n-1)$ polynowid

$$
\Rightarrow \quad e^{A t}=\sum_{j=0}^{n-1} \alpha_{j}(t) A^{j}
$$

3) impulse response $\quad X_{i m p}=e^{A t} B=\sum_{j=0}^{n-1} \alpha_{j}(t) A^{j} B$
controllability \Rightarrow impulse response spand \mathbb{R}^{n} \Rightarrow set of n vectors $B, A B, A^{2} B, \ldots A^{n-1} B$ are all linearly independent $\Rightarrow \operatorname{det} W_{c} \neq 0$
4) in gen.

$$
\dot{X}_{\tau}=\left(\begin{array}{ccc}
\beta A B & A^{2} B \cdots
\end{array}\right)\left(\begin{array}{c}
\int_{0}^{\tau} d t \alpha_{\Delta}(\tau-t) u(t) \\
\int_{0}^{\tau} d t \alpha_{1}(\tau-t) u(t) \\
\vdots
\end{array}\right)
$$

5) MIMO: B is a motrin, u a vector WL reeds to lie rask $=n$ "Gull rank"

Notes

1) Controllability \Rightarrow prescribed trajectory

- recall inverse engineering $u=\dot{x}_{d}+x_{d}$

2) Reach x_{τ} at $\tau \Rightarrow$ bold $x_{\tau} \Rightarrow$ for $t>\tau$
3) Might be good enough to control orly save states on to control in e region orly
4) Control trajectories can be rouloced

5) roxlineon if input saturates (|u|s U U
\rightarrow reachable set
6) Norlinecrity \leftarrow ro gerensl formula

- weale ronlin \rightarrow follows linearization
- geomatrical formulation (fie bracketo)

7) Condition \# of $\omega_{c}=\frac{\max |\lambda|}{\min |\lambda|} \sim e^{n}$
\Rightarrow had to decide and control for $n \gg \mid$
8) Control Dramian: $\quad x_{\mathrm{imp}}(t)=e^{A t} B$

$$
P(t)=\left|X_{\text {imp }}\right\rangle\left\langle x_{i m p}=\int_{0}^{T} d t e^{A t} B B^{\top} e^{A^{\top} t}\right.
$$

contioleabily $\leftrightarrow P(t)$ invertible; eiqs cortivelebly
9) struaturd controllabilety "sc" (fin , 1974) sturctino $\{A, B\} \leftarrow$ set of zers elererto
$S C \longrightarrow \exists\left\{A^{\prime}, B^{\prime}\right\}$ N1 stuet $\{A, B)$ thot is controllable \rightarrow controlleble for alwast all paramaters
10) Invense puoblem: Siven A, fid B so $\{A, B\}$ controll.

- reed to thy 2^{n} comboo of B for $x \in \mathbb{R}^{n}$
- YY Liu + A.L.Bondasi $2011 \rightarrow \quad A \leftrightarrow$ network
\rightarrow graph_thery techrigis \rightarrow poly. time...
IV. Obsewability and Duality controllability: input u "coupled" to entire state vic. x observability: output y "
- to control red to set $u(t)$ over itenral

$$
9-0 y
$$

- to obsewe, reed to measure $y(t)$ over interval

$$
u_{2} \rightarrow s_{y s}
$$

swap U's, samey

- con derive directly, but here: duality $W_{C}=\left(B A B \quad A^{2} B \cdots A^{n-1} B\right)$ is sane is Wo if $A \rightarrow-A^{\top}, b C^{\top}$ ~acloint operate (cot in porto) minus sign
Notice:

$$
\dot{x}=-A^{\top} x+C^{\top} u \quad y=B^{\top} x
$$ on A dresn't

loos $W_{C}=\left(C^{\top} \quad A^{\top} C^{\top} \quad\left(A^{\top}\right)^{2} C^{\top} \cdots\right)=W_{0}^{\top}$ affect
$u(t)$: offects state $x(t)$ at future times $y(t)$: determines $x(t)$ based on past obs.
"We can brow the past but not control it; we can control the fectere but do vol hnow't." \sim Shannon, 1959

Port 2: Obsewers, controller design Control based on the state

Divide control into two problems

1) given $x(t)$; choose $u[x(t)]$ 位 $\} u[\hat{x}(t)]$
2) estimate $\hat{x}(t)$ from pat obsenations $y l_{0}^{t}$

Claim: If $\{A, B\}$ is controllable, then the closed-loop din. forced on $u=-k x \quad\left[\dot{x}=(A-B k) x \equiv A^{\prime} X\right]$ will have n rigenwolves (polls) that can be chosen folly using the n gains in now vector k [SIs case!] Sketch of proof: "Controller canonical form" $\quad A=\left(\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & 1 \\ -a_{n} & -a_{n} & \cdots & -a_{1}\end{array}\right) \quad B=\left(\begin{array}{l}0 \\ \vdots \\ 0 \\ 1\end{array}\right)$

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=x_{3}, \ldots, \dot{x}_{n}=-a_{n} x_{1}-a_{n-1} x_{2}-\cdots a_{1} x_{1}+u
$$

Let $\begin{aligned} & u=-k x=-\left(\begin{array}{llll}k_{1} & k_{2} & \cdots & k_{n}\end{array}\right) \quad B K=\left(\begin{array}{ccc}0 & \cdots & 0 \\ \vdots & & \vdots \\ k_{1} & \cdots & k_{n}\end{array}\right) \\ &\left(\begin{array}{ccc}0 & 0 & \cdots\end{array}\right)\end{aligned}$

$$
A^{\prime}=\left(\begin{array}{ccc}
0 & 0 & \cdots \\
& 1 & \cdots \\
& & \\
-a_{n}-k_{1} & -a_{n-1} k_{2} & 1
\end{array}\right) \quad a_{i} \rightarrow a_{i}-k_{n-i+1}
$$

Thess we see that the dynamis of A^{\prime} ore set K and. Rigs!

Iull-stote Contra
Ex: Damped harmonic ese. $\quad\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}0 & 1 \\ -1 & -2 J\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{1} u$

$$
\begin{aligned}
u & =-\left(\begin{array}{ll}
l_{1} & k_{2}
\end{array}\right)\binom{x_{1}}{x_{2}}=-k_{1} x_{1}-l_{2} x_{2} \\
B K & =\binom{0}{1}\left(k_{1} h_{2}\right)=\left(\begin{array}{ll}
0 & 0 \\
k_{1} & k_{2}
\end{array}\right) \quad A^{\prime}=A-B K=\left(\begin{array}{cc}
0 & 1 \\
-1-k_{1} & -2 f-k_{2}
\end{array}\right)
\end{aligned}
$$

rigs: $\left|s \mathbb{I}-A^{\prime}\right|=\left|\begin{array}{cc}s & -1 \\ 1+h_{1} & \left.s^{-1}+2\right)+h_{2}\end{array}\right|=s^{2}+\left(2 \int+h_{2}\right) s+\left(1+k_{1}\right)=0$ choose k_{1}, l_{2} to put rigs anywhere
eg closed -loop poles ot $s=(-2,-2)$

$$
(s+2)^{2}=s^{2}+4 s+4 \quad \Rightarrow \quad h_{2}=4-2 j \quad l_{1}=3
$$

or $\quad s=\left(-a_{1}-a\right) \quad \Rightarrow \quad k_{1}=a^{2}-1 \quad k_{2}=2(a-1)$
Notice how gains increase with a (ha fou poles are moved)

- In general: use control software to fid gain K
given \{A, B, desired pola positions\} ~
- n poles is a lot of choice! $\%$

1) high gains inject noise (and u may be too fig)
2) unstable system \Rightarrow must mover RHP pho \rightarrow LAP

So: Mover es few poles as possible as little as possible to stabilize, get ω_{c} bligh enough
coder by J...)

Outpet contiol

- if $\{A, C\}$ is obsemable, then

$$
y\left(t \leq t_{0}\right) \rightarrow \tilde{x}\left(t_{0}\right)
$$

- raine differentiation too roisy

Obsever $\quad y \rightarrow \hat{x} \rightarrow u(\hat{x})$ "synchnonize"
Naive obs.

$$
\dot{x}=A x+B u
$$

$$
\hat{\dot{\hat{x}}}=A \hat{x}+B u
$$

$$
e \equiv x-\hat{x} \quad \text { (estination en.) }
$$

asoume we know A, B !
subtroct $\Rightarrow \dot{e}=A e$ inputs carcel!
No good (2) i) if A is unstable, $e \rightarrow \infty$
ii) reed $e \rightarrow 0$ fostar than A dyranics

Obsenver feedbock on deviations betw. obseuvationsy

$$
\begin{aligned}
& \dot{x}=A x+B u \quad y=C x \\
& \dot{\dot{x}}=A \hat{x}+B u+L(y-C \hat{x}) \quad \Rightarrow \dot{e}=(A-L C) e
\end{aligned}
$$

$L=$ obsewen gains $\longleftrightarrow \quad A^{\prime}=A-L C$ orb. poles.
Ex: Hammonic ore. $\quad A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \quad C=\left(\begin{array}{ll}1 & 0\end{array}\right)$

$$
\begin{aligned}
& L=\binom{l_{1}}{l_{2}} \quad L C=\left(\begin{array}{ll}
l_{1} & 0 \\
l_{2} & 0
\end{array}\right) \quad A^{\prime}=A-L C=\left(\begin{array}{cc}
-l_{1} & 1 \\
-1-l_{2} & 0
\end{array}\right) \\
& \text { eigs } \rightarrow s^{2}+l_{1} s+\left(l_{2}+1\right)=0 \\
& \text { eg } s=(-2,-2) \leftrightarrow L=\binom{4}{3}
\end{aligned}
$$

Obsenen - controller

$$
u=-k \hat{x}+h r r
$$

$$
\begin{aligned}
& \dot{x}=A x+B(-k \hat{x}+\operatorname{ler} r), \quad y=C x \\
& \dot{\dot{x}}=A \hat{x}+B(-k \hat{x}+\operatorname{ler} r)+L(y-C \hat{x}) \\
& \dot{e}=A e-L C e=(A-L C) e \\
& \binom{\dot{x}}{\dot{e}}=\left(\begin{array}{cc}
A-B K & B K \\
0 & A-L C
\end{array}\right)\binom{x}{e}+\binom{B \operatorname{ho}}{0} r \quad \hat{x}=x-e
\end{aligned}
$$

M is block triangules \Rightarrow digs given by

$$
\operatorname{det}(s \text { II }-A+B K) \operatorname{det}(s \mathbb{I}-A+L C)=0
$$

\rightarrow Beparotion puinciple ((dayign k,L sep.)

- design sepanately feedback (K) + obewer (L)
- use state estinote \hat{x} for feadback

