Recent Advances in Percolation Theory

Hans J. Herrmann

Dept de Fisica, UFC, Fortaleza, Brazil & PMMH, ESPCI, Paris

Tutorial Course 4th Workshop on Statistical Physics Univ. de los Andes, Bogotá, Oct. 2-6, 2023

Content of the course

Basic notions of percolation Fractal subsets at criticality Variants of percolation **Percolation on correlated surfaces Schramm-Loewner Evolution Explosive percolation models Breakdown models**

History

Broadbent and Hammersley Proc. Cambridge Phil. Soc. Vol. 53, p.629 (1957)

John M. Hammersley (1920 – 2004)

References to percolation

- D. Stauffer: "Introduction to Percolation Theory" (Taylor and Francis, 1985)
- D. Stauffer and A. Aharony: "Introduction to Percolation Theory, Revised Second Edition" (Taylor and Francis, 1992)
- M. Sahimi: "Applications of Percolation Theory" (Taylor and Francis, 1994)
- G. Grimmett: "Percolation" (Springer, 1989)
- **B.Bollobas and O.Riordan: "Percolation"** (Cambridge Univ. Press, 2006)

Percolator

Applications of percolation

- Porous media (oil production, pollution of soils)
- Sol-gel transition
- Mixtures of conductors and insulators (or superconductors and conductors)
- Forest fires
- Propagation of epidemics or computer virus
- Crash of stock markets (Sornette)
- Landslide election victories (Galam)
- Recognition of antigens by T-cells (Perelson)

Gelatin formation

4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023

7

Sol -gel transition

Shear modulus G vanishes and viscosity η diverges at t_g as function of time t.

Percolation

site percolation on square lattice p is the probability to occupy a site. Neighboring occupied sites are "connected" and belong to the same cluster.

Burning method

Probability to find a spanning cluster

Percolation thresholds p_c

lattice	attice site		
cubic (body- centered)	0.246	0.1803	
cubic (face- centered)	0.198	0.119	
cubic (simple)	0.3116	0.2488	
diamond	0.43	0.388	
honeycomb	0.6962	0.65271*	
4-hypercubic	0.197	0.1601	
5-hypercubic	0.141	0.1182	
6-hypercubic	0.107	0.0942	
7-hypercubic	0.089	0.0787	
square	0.592746	0.50000*	
triangular	0.50000*	0.34729*	

Order parameter of percolation

Many clusters

bond percolation

We have clusters of different sizes s and can study the cluster size distribution n_s

$$n_s = \frac{N_s}{N}$$

Many clusters

Cluster size distribution

Hoshen-Kopelman Algorithm (1976)

- $N(i,j) \in \{0,1\}, 0 = empty, 1 = occupied$
- Start: k = 2, N(first occupied site) = k, M(k) = 1
- If site top and left are empty: k = k + 1 and continue
- If one of them has value $k_0: N(i,j) = k_0, M(k_0) = M(k_0) + 1$
- If both are occupied with k_1 and k_2 : choose one, e.g. k_1 , N(i,j) = k_1 , M(k_1) = M(k_1) + M(k_2) + 1, M(k_2) = - k_1
- If any k has negative M(k): while (M(k) < 0)k = -M(k)
- At end: for(k=2; k<=kmax; k++) n(M(k))=n(M(k))+1

Evolution of N(i,j)

Cluster size distribution n_s

Cluster size distribution at p_c

Scaling of cluster size distribution

Second moment χ

Critical exponents

Percolation exponents for $d = 2, 3, 4, 5, 6 - \varepsilon$ and in the Bethe lattice

Table 2.

Exponent	<i>d</i> = 2	<i>d</i> = 3	d = 4	<i>d</i> = 5	$d = 6 - \varepsilon$	Bethe	Page
α	-2/3	-0.62	-0.72	- 0.86	$-1 + \varepsilon/7$	- 1	39
β	5/36	0.41	0.64	0.84	$1 - \varepsilon/7$	1	37
γ	43/18	1.80	1.44	1.18	$1 + \varepsilon/7$	1	37
ν	4/3	0.88	0.68	0.57	$\frac{1}{2} + 5\varepsilon/84$	1/2	60
σ	36/91	0.45	0.48	0.49	$\frac{1}{2} + O(\varepsilon^2)$	1/2	35
τ	187/91	2.18	2.31	2.41	$\frac{5}{2} - 3\varepsilon/14$	5/2	33
$D(p=p_c)$	91/48	2.53	3.06	3.54	$4 - 10\varepsilon/21$	4	10
$D(p < p_c)$	1.56	2	12/5	2.8	_ `	4	62
$D(p > p_c)$	2	3	4	5	—	4	62
$\zeta(p < p_c)$	1	1	1	1		1	56
$\zeta(p > p_c)$	1/2	2/3	3/4	4/5		1	56
$\theta(p < p_c)$	1	3/2	1.9	2.2	_	5/2	54
$\theta(p > p_c)$	5/4	- 1/9	1/8	- 449/450	—	5/2	54
fmax	5.0	1.6	1.4	1.1		1	42
μ	1.30	2.0	2.4	2.7	$3-5\varepsilon/21$	3	91
S	1.30	0.73	0.4	0.15		0	93
D_B	1.6	1.74	1.9	2.0	$2 + \varepsilon/21$	2	95
$D_{\min}(p=p_c)$	1.13	1.34	1.5	1.8	$2-\varepsilon/6$	2	97
$D_{\min}(p < p_c)$	1.17	1.36	1.5		-	2	98
$D_{\max}(p=p_c)$	1.4	1.6	1.7	1.9	$2-\varepsilon/42$	2	97

For the exponents at p_c , the Bethe lattice values are exact at $d \ge 6$. A dash means that 6 is not the upper critical dimension for the ε -expansion.

Size dependence of OP

Shortest path t_s at p_c

Fractal dimension

Books:

- B.B.Mandelbrot, "Les Objets Fractals: Forme Hazard et Dimension" (Flammarion, Paris,1975)
- J. Feder, "Fractals" (Plenum Press, NY, 1988)
- T. Vicsek, "Fractal Growth Phenomena" (World Scientific, Singapore, 1989)
- H.-O.Peitgen and P.H.Richter, "The Beauty of Fractals" (Springer, Berlin, 1986)
- J.-F. Gouyet, "Physique et Structures Fractales) (Masson, Paris, 1992)

Self similarity

Fractal dimension

Sierpinski gasket

Figure 9.1 Construction of the Sierpinski Triangle

 $M \propto L^{d_f}$

 $d_f = \log(3)/\log(2) \approx 1.602$

"box counting" method:

$$\frac{d_f}{d_f} = \log(5)/\log(3) \approx 1.46$$

Sand-box method

M(R) is the number of particles in box of size R.

Sand-box method

Box-counting method

$\varepsilon =$ grid spacing

N(ε) = number of occupied cells

Box-counting method

Multifractality

 N_i = number of points in box *i*

 $p_i = N_i$ / total number of points

Strange attractor

Strange attractor

Hénon Map

Volatile fractal

Correlation function

The correlation function g(r) for percolation describes the connectivity and is defined as the probability that an occupied site is connected to a site at distance r. This is equivalent to the probability that the two sites belong to the same cluster. The correlation length ξ is the characteristic length of the exponential decay of the

correlation function.

Calculate g(r)

Correlation length ξ

If one just analyses one cluster connectivity correlation function g(r) = c(r)

$$\left|g(r) = \frac{\Gamma(d/2)}{2\pi^{d/2}r^{d-1}\Delta r} \left[M(r+\Delta r) - M(r)\right]\right|$$

$$g(r) \propto C + e^{-\xi}$$
 with $C = 0$ for $p < p_c$

r

For $p < p_c$ the correlation length ξ is proportional to the radius of a typical cluster.

Correlation length ξ

Correlation length ξ

Finite size effects

problem when:

system size $L < ext{correlation length } \xi$

i.e. close to the critical point:

Round-off in correlation length ξ

Finite size effects

Apply finite size dependence

Extrapolation to infinite size

 $L^{\frac{1}{\nu}}$

Gradient percolation

M Rosso, JF Gouyet, B Sapoval, J. Phys. Lett. 46, L149 (1985)

Gradient percolation

Perimeters

Finite size scaling for χ

Finite size scaling of OP

Making individual clusters

1. Leath algorithm

for any value of p

2. Invasion percolation

only at p_c

FIG. 1. Transition percolation with trapping on a 160×800 lattice. The invador followed ensem from does not the laft-based edge and the defender (white) means through the right-based edge. At breakthrough the invador first random the right-based edge and bas invadant 1/1402 data. Difference calculate the right on other analoh indicate inter added within accounts r motion is marked at 2111.

Dynamics on percolation clusters

Dynamics on percolation clusters

Dynamics on percolation clusters

Remove the dangling ends from the IIC and you get the backbone = current carrying subset. $d_{BB} = 1.64333 \pm 0.0001$ in 2d $d_{BB} = 1.875 \pm 0.003$ in 3d **Red bonds** or **cutting bonds** disrupt the current if removed. Their fractal dimension is 1/v (A. Coniglio, 1981). In two dimensions $1/v = \frac{3}{4} < 1$

Structure of the backbone

Structure of the backbone

Hierarchy of critical exponents

Multifractal current distribution

L. de Arcangelis, S. Redner, A. Coniglio, Phys. Rev. B 31, 4725 (1985)

Multifractal current distribution

Calculating the current distribution

W.R. de Sena, J.S. Andrade Jr., H.J.H., A.A. Moreira

One can obtain local currents with precision up to 10-35

Calculating the current distribution

At each level *k* each 3-connected components must be multiplied by a factor *f* to consider the corresponding reduction of the current.

Random fuse model

L. de Arcangelis, S. Redner, H.J.H., J. Physique Lett. 46, L585-L590 (1985)

Diffusion on percolation clusters

$$t \sim R^{d_w} d_w$$

 $\langle r^2(t) \rangle \sim t^{2/d_w}$

Nernst-Einstein equation

at p_c

$$\sigma_{\rm dc} = n(e^2/k_BT)D$$
$$d_w = 2 + \frac{t-\beta}{v}$$

> 2

Rigidity percolation

Elastic behaviour of disordered solids Occupy bonds with elastic springs.

At which dilution does the solid collapse = shear modulus G vanishes

Rigidity percolation

Rigidity percolation

HJ Herrmann, DC Hong and HE Stanley J.Phys. A 17, L261 (1984)

The elastic backbone is the union of all shortest paths connecting two points P₁ and P₂

It describes the elastic response of a floppy spring network.

site percolation on tilted square lattice

p = 0:75

C.I.N. Sampaio , J.S. Andrade Jr., H.J. H., A.A. Moreira, Phys. Rev. Lett. 120, 175701 (2018)

Elastic Backbone

Elastic Backbone

Elastic Backbone

Directed percolation

= percolation on a directed lattice

 $p > p_{c}$

If all bonds point in the same direction one can identify this direction with time t.

 $P \leq p_c$

healing phasespreading phasetwo different correlation lengths: $p_c = 0.644700185(5)$ (Jensen,99) $\xi_{\parallel} \sim (p - p_c)^{-\nu_{\parallel}}$ $\nu_{\parallel} = 1.73$ $\xi_{\perp} \sim (p - p_c)^{-\nu_{\perp}}$ $\nu_{\perp} = 1.09$

Directed percolation

randomly isotropically distributed orientation of bonds

black:
strongly connected
component
red + black:
outgoing component
blue + black:
incoming component

77

A.W.T. de Noronha, A.A. Moreira, A.P. Vieira, H.J.H., J.S. Andrade, H.A. Carmona, Phys. Rev. E 98, 062116 (2018) 4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023

Directed percolation

Two types of clusters can be defined: 1. strongly connected ones are the sets of points that can be mutually reached following strictly the bond directions 2. directionally connected ones are all the sites that can be reached from a given site following bond directions

Directionally connected clusters are in the universality class of standard percolation, while strongly connected clusters have different exponents.

can be realized experimentally with electric diodes

Disturbing the shortest path of directed percolation

Consider the shortest path on a square lattice with randomly distributed orientation of bonds. Then, flip the direction of one single bond along the path.

F. Hillebrand, M. Lukovic, H.J.H., Phys. Rev. E 98, 052143 (2018)

Disturbing the shortest path in directed percolation

distribution of differences

in path lengths

distribution of enclosed areas

Sequential disruption of the shortest path in isotropic percolation

Continuum percolation

Continuum percolation

Swiss cheese model = void model Below the Above the Percolation Percolation Threshold Threshold -Fill Particle same universality class as on lattice -Bulk Phase

Chalupa, Leath and Reich (1979)

Start with p = 0.55 on square lattice. Remove iteratively all sites that have less than m = 2 occupied neighbors: "culling".

Figure 2. The initial freshly occupied lattice shown on the left for m = 3 on the triangular lattice at an initial concentration of p = 0.66, above the usual percolation threshold of $p_c = 1/2$ for this lattice. For initial occupation there is indeed an infinite cluster, but after culling there is a more compact cluster that does not percolate, as shown on the right.

triangular lattice, m = 3

triangular lattice, m = 4

Farrow, Duxbury and Moukarzel (2008)

discontinuous (first order) transition

cubic lattice, m = 4

P M Kogut and P L Leath, J. Phys. C 14 3187 (1981)

Drilling percolation

Drill in each direction $(1-p)L^2$ holes.

K.J. Schrenk, M.R. Hilário, V. Sidoravicius, N.A.M. Araújo, H.J.H., M. Thielmann, A. Texeira, Phys. Rev. Lett. 116, 055701 (2016)

Drilling percolation

Correlated Landscapes

Artificial landscapes correlated through "fractional Brownian motion"

$$\langle (h(x)-h(y))^2 \rangle \propto |x-y|^{2H}$$

H is Hurst exponent*H* = -1 uncorrelated surface*H* = 0 Gaussian free field

 $|S(\omega) \propto |\omega|^{-2(H+1)}$

Fourier Filtering Method (Prakash et al, 1992)

power spectrum

Percolation on Correlated Landscapes

on triangular lattice $p_c = \frac{1}{2}$ for all H

 γ_H is exponent of second moment and v_H of correlation length.

Percolation on Correlated Landscapes

at $p_c = \frac{1}{2}$ fractal dimensions

cutting bonds

backbone

K.J. Schrenk, N. Posé, J.J. Kranz, L.V.M. van Kessenich, N.A.M. Araújo, H.J. Herrmann, Phys. Rev. E 88, 052102 (2013)

Percolation on Correlated Landscapes

exponent of electrical conductivity at $p_c = \frac{1}{2}$

Watersheds

- Consider a landscape on a square lattice where h_i is the height at site *i*.
- Open b.c. on top and bottom and periodic b.c. between left and right.
- For each site *i* we determine if water from it would flow to the top or to the bottom.
- The watershed (or water divide) separates the sites for which it flows to the top from those for it flows to the bottom.

E. Fehr, J.S. Andrade, SD. da Cunha, L.R. da Silva, H.J. Herrmann, D. Kadau, C.F. Moukarzel, E.A. Oliveira, J. Stat. Mech. P09007 (2009)

Watersheds

Numerical Calculation of Watersheds

Watershed of random landscape

Local heights are randomly chosen from a homogeneous distribution.

Discrete landscapes

b

real landscape

a

С

DEM: discrete elevation map (course grained)

0.385	0.425	0.477	0.649	0.697	0.694	0.638	0.506
0.539	0.489	0.389	0.600	0.687	0.762	0.763	0.742
0.705	0.651	0.450	0.427	0.508	0.737	0.775	0.769
0.633	0.634	0.573	0.371	0.363	0.485	0.505	0.650
0.577	0.683	0.606	0.386	0.312	0.251	0.287	0.392
0.525	0.560	0.555	0.395	0.350	0.127	0.115	0.307
0.380	0.487	0.490	0.383	0.400	0.219	0.186	0.317
0.356	0.468	0.574	0.642	0.614	0.449	0.500	0.428

16	22	28	51	57	56	49	35
38	31	18	44	55	61	62	60
58	53	26	23	36	59	64	63
47	48	41	13	12	29	34	52
43	54	45	17	8	5	6	19
37	40	39	20	10	2	1	7
14	30	32	15	21	4	3	Ø
11	27	42	50	46	25	33	24

discretization

ranked surface

Ranked surface

Size of Phase Space

N is the number of sites

Number of configurations of usual percolation 2^{N}

Number of configurations of ranked percolation

Same universality class

bridge percolation

K.J. Schrenk, N.A.M. Araújo, J.S. Andrade Jr., H.J.H., Sci. Rep. 2, 348 (2012) shortest path on loop-less percolation

optimal path crack

J.S. Andrade Jr., E. Oliveira, A. Moreira and HJH, Phys.Rev.Lett. 103, 225503 (2009)

Same universality class

Two invading liquids touching

Fuses in infinite disorder

A.A. Moreira, C.L.N. Oliveira, A. Hansen, N.A.M. Araújo, H.J.H., J.S. Andrade Jr, Phys. Rev. Lett. 109, 255701 (2012)

High precision calculation

E. Fehr, K.J. Schrenk, N.A.M. Araújo, D. Kadau, P. Grassberger, J.S. Andrade Jr., H.J.H. Phys. Rev.E 86, 011117(2012)

Watersheds on natural landscapes

Landscapes have a spatial power-law correlation described by a Hurst exponent H:

$$\left|\left\langle \left(h(x)-h(y)\right)^2\right\rangle \propto \left|x-y\right|^{2h}\right|^{2h}$$

E. Fehr, J. S. Andrade Jr., S. D. da Cunha, L. R. da Silva, H.J.H., D. Kadau, C. F. Moukarzel and E. A. Oliveira, J. Stat. Mech., P09007 (2009)

Perturbations on Watersheds

Perturbations on Watersheds

Distribution of areas A for different landscapes following:

$$P(A) \propto A^{-\beta}$$

$$\beta = 1.65$$

 \mathbf{R} = distance between outlets ; \mathbf{A} = area

Perturbations on Watersheds

Scaling of the distribution of R and of A with system size for an artificial landscape with uniformly distributed heights. $\rho = 2.21$ $\beta = 1.16 \pm -0.03$

Perturbations on Watersheds

Number of sites Non which a perturbation makes a change of the watershed as function of the strength Δ of the perturbation.

E. Fehr, D. Kadau, J.S. Andrade Jr., HJH, Phys. Rev. Lett 106, 048501(2011)

Perturbations on Watersheds

Dependence of the exponents α (squares) β (circles) and ρ (triangles) on the Hurst exponent for artificial correlated landscapes.

 $P(R) \sim R^{-\rho}$ $P(A \mid R) \propto A^{-\alpha}$

Schramm-Loewner Evolution (SLE)

Special mapping of a loopless path in complex space to a scalar random time series, called «driving function».

If fractal path conformally invariant and Markovian, then the driving function is a Brownian walk and its diffusivity κ is related to the fractal dimension d_f of the path through:

2d

- $\kappa = 2$ loop erased random walk
- $\kappa = 8/3$ self-avoiding walk
- $\kappa = 3$ hull of critical Ising clusters
- $\kappa = 4$ Gaussian free field
- $\kappa = 6$ perimeter of critical percolation clusters

Schramm-Loewner Evolution (SLE)

conformally invariant and Markov property $g_t(z): \mathbb{H} \to \mathbb{H}$ is a conformal mapping following the Loewner equation:

$$\frac{\partial g_t(z)}{\partial t} = \frac{2}{g_t(z) - \xi_t}, \qquad g_0(z) = z$$

 $\xi_t = \sqrt{\kappa B_t}$ is the "driving function"

where B_t is a 1d Brownian motion

Generation of driving function

«zipper algorithm with vertical slit discretization»:

 $f_k(z) = g_k^{-1}(z)$ given discrete (complex) values of the path: γ_k

$$f_k(z) = i\sqrt{-\mathrm{Im}\{\omega_k\}^2 - (z - \mathrm{Re}\{\omega_k\})^2}.$$

$$\omega_k = f_{k-1} \circ f_{k-2} \circ \ldots \circ f_1(\gamma_k) \quad \omega_1 = \gamma_1,$$

$$t_k = \frac{1}{4} \sum_{j=1}^k \operatorname{Im}\{\omega_j\}^2 \qquad U_{t_k} = \sum_{j=1}^k \operatorname{Re}\{\omega_j\},$$

T. Kennedy, J.Stat.Phys. 131, 803 (2008)

Schramm-Loewner Evolution (SLE)

Schwarz-Christoffel mapping

$$f(z) = a + c \int_{0}^{z} \prod_{k=1}^{n-1} (s - x_k)^{\beta_k} ds,$$

for some real x_1, \ldots, x_{n-1} satisfying

 $x_1 < x_2 < \cdots < x_{n-1} < x_n = \infty$

Driving function for Watershed

Winding angle for Watershed

Shortest path on percolation cluster at p_c

variance of the winding angle:

N. Posé, K.J. Schrenk, N.A.M. Araújo, H.J.H., Sci. Rep. 4, 5495 (2014)

mean square deviation of the driving function against Loewner time

Shortest path on correlated landscapes

Complete and Accessible Perimeters

Complete and Accessible Perimeters

4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023

lines

Fractal Dimension of Perimeters

Fractal dimension of the complete and accessible perimeter of percolation on triangular lattice at $p_c = \frac{1}{2}$ as function of the Hurst exponent of the random landscapes.

$$d_{\rm CP} = \frac{3}{2} - \frac{H}{3}$$

 $d_{\rm AP} = \frac{9 - 4H}{6 - 4H}$

K.J. Schrenk, N. Posé, J.J. Krantz, L.V.M. van Kessenich, N.A.M. Araújo, H.J.H, Phys.Rev.E 88, 052102 (2013)

 $Var[\theta_L] = \langle \theta_L^2 \rangle - \langle \theta_L \rangle^2 = a + m \ln L$ $m = \kappa/4$

mean square displacement of the driving function

diffusion coefficient

H = -0.8, -0.4 and 0

time correlation

rescaled variance of the winding number:

N. Posé, K.J. Schrenk, N.A.M. Araújo, H.J.H., IJMPC

left passage probability

variance of the driving function against Loewner time

correlations in time for different Hurst exponents

Beyond conformal invariance

H.F. Credidio, A.A. Moreira, H.J.H., J.S. Andrade Jr., Phys. Rev. E 93, 042124 (2016)

4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023

3.8-10

Multi-layered percolation

probability to occupy site: $p \pm \Delta$ where for each line the sign is chosen randomly

 Δ is the degree of anisotropy

Directed percolation

Anisotropic models

mean square deviation of the driving function

averaged over 10⁴ traces of length 10⁵

H.F. Credidio, A.A. Moreira, H.J.H., J.S. Andrade Jr., Phys. Rev. E 93, 042124 (2016) 4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023

Anisotropic models

Inverse operation: start with a (discretized) driving function U_t obtained from fractional Brownian motion with Hurst exponent H i.e. following $\left| \left\langle U_t^2 \right\rangle = b t^{2H} \right|$

Then obtain a trace in complex plane from $\gamma_i = g_0 \circ g_1 \circ \ldots \circ g_i(0)$,

 $g_i(z) = i\sqrt{4(t_i - t_{i-1})^2 - z^2 + (U_{t_i} - U_{t_{i-1}})}.$ with

and measure its anisotropy with:

$$F_X(i\Delta l) = \sqrt{\frac{1}{M-i} \sum_{j=0}^{M-i} \left[\operatorname{Re}\left\{ \gamma(l_{j+1}) \right\} - \operatorname{Re}\left\{ \gamma(l_j) \right\} \right]^2}$$

Anisotropic models

mean square deviation in X and Y direction of SLE traces driven by time series following anomalous diffusion (fBm):

uncorrelated

persistent

anti-persistent

The Saga of **Explosive Percolation**

Raissa D'Souza

Joel Spencer

D. Achlioptas, R. M. D'Souza and J. Spencer, Science 323, 1453 (2009)
Product Rule (PR)

- Consider a fully connected graph.
- Select randomly two bonds and occupy the one which creates the smaller cluster.

product rule

Product Rule (PR)

cluster size distribution n_s

on the square lattice:

Y. S. Cho et al., Phys. Rev. E 82, 042102 (2010)

However, ...

Transition continuous in thermodynamic limit

J. Nagler, A. Levina and T. Timme, Nature Phys. 7, 2645 (2010)

O. Riordan and L. Warnke, Science, 333, 322 (2011)

R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys. Rev. Lett., 105, 255701 (2010)

But what happens in finite dimension ??

Best-of-*m* Model

José Soares Andrade Jr.

 Select randomly *m* bonds and occupy the one which creates the smaller cluster

This is a straightforward generalization of the Product Rule which corresponds to m = 2. m = 1 is classical percolation.

Best-of-*m* Model

- select randomly a bond
- if not related with the largest cluster occupy it
- else, occupy it with probability

$$q = \exp\left[-\left(\frac{s-\overline{s}}{\overline{s}}\right)^2\right]$$

Nuno Araújo and HJH, Phys. Rev. Lett. 105, 035701 (2010)

order parameter: P_{∞} = fraction of sites in largest cluster

at p_c

classical percolation

Surface of the clusters

Largest cluster Model in 3D

K.J. Schrenk, N.A.M. Araújo, and H.J.H., Phys. Rev. E, 84, 041136 (2011)

Largest cluster model in 3D

A bridge (or anti-red bond) is a bond which if occupied would create the first spanning cluster.

bridge

K.J. Schrenk, N.A.M. Araújo, J.S. Andrade Jr., H.J.H., Sci. Rep. 2, 348 (2012)

 $p_{\text{c-bridge}} = 1$ 10^{5} 10^{4} $d_f = 1.216 \pm 0.002$ M_{BB} 10³ 10^{2} 10² 10^{3} 10

4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023

 10^{4}

Bridge Percolation in 3D

Bridge Percolation in 3D

Bridge Percolation d = 2 - 6

Cutting bonds

Cutting bonds

If one starts from a 10^{5} fully occupied lattice and removes bonds 10 except if they are cutting bonds \hat{N}_{CB} in 2d they have the same behavior as the bridges before 10¹ (same exponents). In higher dimension 10^{0} the exponents are different.

Y. S. Cho, S. Hwang, H.J.H., and B. Kahng, Science, 339, 1185 (2013) Choose *m* unoccupied bonds and occupy randomly one which is not a bridge, if all are bridges then choose randomly one of these bridges.

For finite systems there is a jump for m > 1.

 $m_c(2) \approx 2.55 \pm 0.01$ $m_c(3) = 5.98 \pm 0.07$ $m_c(4) = 16.99 \pm 5.23$

Y. S. Cho, S. Hwang, H.J.H., and B. Kahng, Science, 339, 1185 (2013) 4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023

$$N_{b} = d L^{d} \text{ is the number of bonds}$$

$$N_{BB} \sim \begin{cases} L^{1/\nu} & \text{for } p = p_{c} \\ L^{d}f(p - p_{c})^{\varsigma} & \text{for } p > p_{c} \end{cases}$$
probability to have
$$q(p, m) = \left[\frac{N_{BB}}{N_{b}(1 - p)}\right]^{m} \sim N_{b}^{-m} \left[\frac{N_{b}^{d}(p - p_{c})^{\varsigma}}{1 - p}\right]^{m}$$

$$\Rightarrow m_{c}(d) = \frac{d}{d - d_{f}} \Rightarrow \text{For } d > 6 \text{ the transition} \text{ is always continuous.}$$

One can also show analytically that:

for $m < m_c$

$$p_{cm}(N) - p_c \sim N^{-1/\overline{\nu}_{<}}$$

for
$$m > m_c$$

$$1 - p_{cm}(N) \sim N^{-1/\overline{\nu}_{>}}$$

$$1/\overline{v}_{>} = (m/m_{c}-1)/(m-1)$$

 $|1/\nu_{<} = (1 - m/m_{c})/(m\zeta + 1),$

Connect randomly individuals but with a law imposing that every new connection must at least involve one individual belonging to the fraction **g** of the most disconnected population.

Y.S. Cho, J.S. Lee, H.J.H., B. Kahng, Phys. Rev. Lett. 116, 025701 (2016)

- Start with N isolated individuals.
- R is the subset of sites belonging to the k clusters following

$$N_{k-1}(t) < [gN] \le N_k(t)$$
 with $N_k(t) = \sum_{l=1}^k s_l(t)$

• At each step select uniformly at random one node from R and the other from the entire system.

Unbrid Transition	g	$ au^*$	au
IIyDIIG ITAIISIUOII	0.1	2.012	2.03 ± 0.04
$\int 0 \text{for } t < t$	0.2	2.061	2.08 ± 0.04
$m(t) = \begin{cases} 0 & 101 & t < t_c \\ c & c & c \\ c & c & c \\ c & c & c \\ c & c &$	0.3	2.111	2.12 ± 0.04
$(m_0 + r(t - t_c))^{\beta}$ for $t \ge t_c$	0.4	2.155	2.16 ± 0.04
MARY WARK WARK	0.5	2.194	2.18 ± 0.04
In mean-field the cluster size exponent	0.6	2.231	2.20 ± 0.04
A V DURANA V DURA	0.7	2.268	2.22 ± 0.04
$2 < \tau < 2.5$	0.8	2.310	2.25 ± 0.04
varios continuously with a as	0.9	2.364	2.28 ± 0.04
varies continuously with g as:			IY.
		1	

$$\frac{\zeta(\tau)}{\zeta(\tau-1)} = \frac{1}{g} - \frac{1}{g+1} \ln\left(\zeta(\tau-1)\left(\frac{g+1}{2}\right)^{-\left(1+\frac{1}{g}\right)}\right)$$

Y.S. Cho, J.S. Lee, H.J.H., B. Kahng, Phys. Rev. Lett. 116, 025701 (2016)

Optimal Path Crack

Optimal Path Crack

Optimal Path Crack in strong disorder

- Consider a random energy landscape with strong disorder, i.e. where the values are distributed randomly according to: $p(\varepsilon_i) \propto \frac{1}{\varepsilon_i}$
- Find the path from top to bottom for which the sum of all energies on this path is minimal. This optimal path has the same fractal dimension as the watershed.
- If one removes from the system the site which on the optimal path had the largest energy, looks for the optimal path in this new system, again removes the site of largest energy and so on, one gets at the end a crack which also has the same fractal dimension.

J. S. Andrade, E.A. Oliveira, A.A. Moreira, HJH, Phys. Rev. Lett. 103, 225503 (2009) 4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023

Optimal Path Crack in strong disorder

fractal dimension: $d_f = 1.21 \pm 0.02$

J. S. Andrade, E.A. Oliveira, A.A. Moreira, HJH, Phys. Rev. Lett. 103, 225503 (2009)

4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023

Thank you !

4th Workshop on Statistical Physics, Univ. de los Andes, Bogotá, Oct. 2-6, 2023 183