

Advanced X-ray imaging: Spectral and Phase-contrast Techniques

Workshop on Particle Detectors for Interdisciplinary Applications Dept. of Physics, University de los Andes, Bogota, Colombia (online) October 1st, 2024

Luca Brombal

Finanziato dall'Unione europea **NextGenerationEU**

Workshop on Particle Detectors for Interdisciplinary Applications. September 30 – October 2.

Financial interests and relationship **NOTHING TO DISCLOSE!**

Funding

We acknowledge financial support under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for tender No. 1409 published on 14.9.2022 by the Italian Ministry of University and Research (MUR), funded by the European Union – NextGenerationEU– under the PRIN-PNRR Scheme, Project Title MUST – CUP (J53D23014070001).

Finanziato dall'Unione europea NextGenerationEU

TRIESTE X-RAY TOMOGRAPHY COLLABORATIVE

UNIVERSITÀ DEGLI STUDI DI TRIESTE

TRIESTE X-RAY TOMOGRAPHY COLLABORATIVE

OUTLINE

- X-ray imaging fundamentals
- Spectral imaging
- Phase-contrast imaging
- Spectral phase-contrast imaging

WHAT'S CONVENTIONAL X-RAY IMAGING?

The basics before getting advanced...

The key elements of conventional X-ray imaging are:

- **1.X-ray source** (e.g., X-ray tube)
- 2.Sample to be investigated
- 3. Detector sensitive only to X-ray intensity

Sample's visibility depends on the (partial) attenuation of X-rays:

- Sample thickness (T)
- Linear attenuation coefficient of the sample (μ)

130 YEARS OF PROGRESS...

First radiograph by Wilhelm Conrad Roentgen - Fall 1895, - 1st Nobel Prize in Physics 1901

← First commercial device spring 1896

Commercial devices \rightarrow nowadays

...CONSPIRACY THEORY DETOUR...

Wilhelm Conrad Roentgen Fall 1895

Check this out

Was Roentgen the first to discover X-rays?

https://doiserbia.nb.rs/img/doi/0025-8105/2016/0025-81051610313V.pdf

ADVANCED X-RAY IMAGING

CONVENTIONAL IMAGING

1.X-ray source – conventional X-ray tube

2.Detector sensitive only to beam intensity

3.Sample to be investigated

ADVANCED IMAGING

1.X-ray source with high coherence (spatial/temporal) or capable of producing different X-ray spectra at the same time

2.Detector sensitive to the energy spectrum of x-rays

3.Optical elements to condition the beam upstream and/or downstream of the sample

UNIVERSITÀ DEGLI STUDI DI TRIESTE

ADVANCED X-RAY IMAGING

SPECTRAL imaging

PHASE-CONTRAST imaging

ADVANCED IMAGING

1.X-ray source with high coherence (spatial/temporal) or capable of producing different X-ray spectra at the same time

2.Detector sensitive to the energy spectrum of x-rays

3.Optical elements to condition the beam upstream and/or downstream of the sample

UNIVERSITÀ DEGLI STUDI DI TRIESTE

X-RAY IMAGING IN WAVE FORMALISM

Just a few slides

n(x, y, z; E) = complex refractive index

Rigon, Luigi. "X-ray imaging with coherent sources." (2014): 193-216.

X-RAY IMAGING IN WAVE FORMALISM

Just a few slides

• In the wave model the interaction of X-rays with matter is described through the complex refractive index *n*

$$n(E) = 1 - \delta(E) + i\beta(E)$$

WHY SPECTRAL?

WHY PHASE-CONTRAST?

Istituto Nazionale di Fisica Nucleare

OUTLINE

- X-ray imaging fundamentals
- Spectral imaging
- Phase-contrast imaging
- Spectral phase-contrast imaging

X-RAY SPECTRAL IMAGING

Spectral imaging requires to probe the attenuation properties of the sample (at least) at 2 different energies

Images acquired at different energies are processed through matrix inversion algorithms to extract (quantitative) maps of elements of interest

Decompositio

algorithm

X-RAY SPECTRAL RADIOGRAPHY – BASICS (1)

X-RAY SPECTRAL RADIOGRAPHY – BASICS (2)

If we have 2 objects made of different materials...

$$I = I_0 e^{\left[-\frac{\mu}{\rho}(E)\Big|_1 \rho_1 T_1 - \frac{\mu}{\rho}(E)\Big|_2 \rho_2 T_2\right]}$$

$$P \equiv -\ln\left(\frac{I}{I_0}\right) = \left[\frac{\mu}{\rho}(E)\Big|_1 \rho_1 T_1 + \left.\frac{\mu}{\rho}(E)\right|_2 \rho_2 T_2\right]$$

From a single image I, one cannot uncouple/distinguish the 2 materials, i.e. we cannot solve the equation for $\rho_1 T_1$ and $\rho_2 T_2$

BASIS MATERIAL DECOMPOSITION

Two monochromatic energy channels (e.g., with synchrotron)

References

- <u>Alvarez, R E; Macovski, A (1976). Energy-selective reconstructions in X-ray</u> computerised tomography. Physics in Medicine and Biology, 21(5), 733-74-
- Lehmann LA, Alvarez RE, Macovski A, Brody WR, Pelc NJ, Riederer SJ, Hall A Generalized image combinations in dual KVP digital radiography. Med Phys <u>Sep-Oct;8(5):659-67</u>

$$\checkmark$$
 Low energy image $P^{l} = \frac{\mu}{\rho} \Big|_{1}^{l} \rho_{1}T_{1} + \frac{\mu}{\rho} \Big|_{2}^{l} \rho_{2}T_{2}$

High energy image

$$P^{h} = \frac{\mu}{\rho} \Big|_{1}^{h} \rho_{1}T_{1} + \frac{\mu}{\rho} \Big|_{2}^{h} \rho_{2}T_{2}$$

In a matrix form:

$$\begin{pmatrix} p^{l} \\ p^{h} \end{pmatrix} = \begin{pmatrix} \frac{\mu}{\rho} \Big|_{1}^{l} & \frac{\mu}{\rho} \Big|_{2}^{l} \\ \frac{\mu}{\rho} \Big|_{1}^{h} & \frac{\mu}{\rho} \Big|_{2}^{h} \end{pmatrix} \begin{pmatrix} \rho_{1}T_{1} \\ \rho_{2}T_{2} \end{pmatrix}$$
Matrix inversion:
$$\begin{pmatrix} A. \\ AL. \\ S. 1981 \end{pmatrix} \begin{pmatrix} \rho_{1}T_{1} \\ \rho_{2}T_{2} \end{pmatrix} = \begin{pmatrix} \frac{\mu}{\rho} \Big|_{1}^{l} & \frac{\mu}{\rho} \Big|_{2}^{l} \\ \frac{\mu}{\rho} \Big|_{1}^{h} & \frac{\mu}{\rho} \Big|_{2}^{l} \end{pmatrix} \begin{pmatrix} p^{l} \\ p^{h} \end{pmatrix}$$

MULTIPLE BASIS MATERIAL DECOMPOSITION

The algorithm can be extended to multiple energy channels and multiple

SPECTRAL IMAGING SYSTEMS

X-ray spectrum-based

•2 X-ray tubes with different voltages

в

Voltage switching

• Dual layer detectors

Detector-based

Crystal-based

SPECTRAL DETECTORS

- Spectral detectors can acquire multiple images over different energy channels in a single shot
- High-Z sensors (CdTe, CZT, GaAs, ...) are used for spectral imaging due to their high efficiency at high energies (>30 keV)

CHIP/PRODUCER	PIXEL SIZE (μm)	NUMBER OF THRESHOLDS
MEDIPIX3	55	2 (8 in 2x2 Binning)
PIXIRAD – PIXIEIII	62	2
DIRECT CONVERSION	100	2
DECTRIS - EIGER 2	75	2
TIMEPIX4	55	Full Spectrum, ~1.5 KeV resolution

SPECTRAL DETECTORS: HOW DO WE MEASURE X-RAY ENERGY?

ENERGY MEASUREMENT VIA TIME-OVER-THRESHOLD (TOT)

The signal amplitude and duration is proportional to the energy released in the sensor from the X-ray

When the signal amplitude exceeds a threshold, a clock starts. It stops when the signal is below the threshold

The number of clock cycles is proportional to the amplitude i.e. the energy

For each event you have the full energy information (*hyperspectral performance*)

Delogu, P., et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1068 (2024): 169716.

UNIVERSITÀ DEGLI STUDI DI TRIESTE

ENERGY MEASUREMENT VIA DISCRIMINATION (PHOTON-COUNTING)

The signal amplitude and duration is proportional to the energy released in the sensor from the X-ray

When the signal amplitude exceeds a programmable energycalibrated threshold a counter is incremented (+1)

By having multiple thresholds per pixel multiple energy bins are acquired

Istituto Nazionale di Fisica Nuclear

INFN

UNIVERSITÀ DEGLI STUDI DI TRIESTE

detecto Chinese Journal of Acad mic

clinical potential of photon-counting "Basic principle

nd

MODELLING DETECTOR'S ENERGY RESPONSE

- 1. Measure the energy response of the detector to monochromatic radiation
- 2. Model its energy response at arbitrary energy levels

COMPUTING THE BASIS-DECOMPOSITION MATRIX

APPLICATIONS: CADIOVASCULAR IMAGING

Bin1 [27, 33] keV

1 cm

Bin2 >33 keV

lodine map

Ex-vivo murine model perfused with μAngiofil®

35 µm voxel size
790 x 790 x 2500 voxel x 2 energies
12 Gb dataset

APPLICATION TO CA4+ LABELED OSTEOARTICULAR SAMPLES

High energy

In collaboration with:

.......

SERVIZIO SANITARIO REGIONALE EMILIA - ROMAGNA Istituto Ortopedico Rizzoli di Bologna Istituto di Ricovero e Cura a Carattere Scient

Iodine/cartilage

Fantoni, Simone, et al. The European Physical Journal Plus 139.8 (2024): 1-10.

UNIVERSITÀ DEGLI STUDI DITRIESTE

APPLICATION TO CA4+ LABELED OSTEOARTICULAR SAMPLES

In collaboration with:

INFN Istituto Nazionale di Fisica Nucleare

UNIVERSITÀ DEGLI STUDI DI TRIESTE

QUANTITATIVE MULTI-CONTRAST μ CT

Di Trapani, V., L. Brombal, and F. Brun. "Multi-material spectral photon-counting micro-CT with minimum residual decomposition and self-supervised deep denoising." Optics Express 30.24 (2022): 42995-43011.

bin2 - [26, 33] keV

bin4 - [37, 42] keV

bin6 - [47, 50] keV

bin7 - [50, 57] keV

QUANTITATIVE MULTI-CONTRAST μ CT

		Nominal [mg/ml]	Me [m
CANAL .	lodine	40	37.0
TELS IN	Barium	35	30.
S-AIP	Gadolinium	39	41.2

V. Di Trapani, L. Brombal, and F. Brun. "Multi-material spectral photoncounting micro-CT with minimum residual decomposition and selfsupervised deep denoising." Optics Express 30.24 (2022): 42995-43011.

APPLICATIONS: HIGH-ENERGY SPECTRAL IMAGING

Perion et al. "Spectral micro-CT for simultaneous gold and iodine detection, and multi-material identification", accepted on JINST (2024)

OUTLINE

- X-ray imaging fundamentals
- Spectral imaging
- Phase-contrast imaging
- Spectral phase-contrast imaging

PHASE EFFECTS

A naïve interpretation

- Within the ray-optical approximation phase effects = *refraction*
- Refraction is proportional to the gradient of $\delta \xrightarrow{}$ strong at the edges
- Refraction angles range 1-100 μrad

Ultra-small angle scattering (= dark field)

Microstructured sample

• In microstructured samples multiple-refraction occurs, causing a diffusion of the beam in the range 1-100 μrad

• The "amount of diffusion", i.e. scattering signal, depends on sample's properties at a scale smaller than the system's spatial resolution

 σ

EDGE ILLUMINATION: HOW IT WORKS

Olivo, Alessandro. "Edge-illumination x-ray phase-contrast imaging." *Journal of Physics: Condensed Matter* 33.36 (2021): 363002.

UNIVERSITÀ DEGLI STUDI DI TRIESTE

EDGE ILLUMINATION: HOW IT WORKS

EDGE ILUMINATION: SIGNAL RETRIEVAL

M. Endrizzi et al., Appl. Phys. Lett. 104, 024106 (2014)

TRIESTE

PHASE-CONTRAST CAPABILITIES

Brombal, Luca, et al. Sci. Rep. 13.1 (2023): 4206

UNIVERSITÀ DEGLI STUDI DI TRIESTE

EDGE ILLUMINATION PROS AND CONS

Works with polychromatic spectra

Flexible acquisition protocols (sensitivity vs speed, spatial resolution vs speed)

"Photon hungry" technique
Alignment of masks is critical
Masks are "relatively" expensive

UNIVERSITÀ DEGLI STUDI DI TRIESTE

PROPAGATION-BASED IMAGING - PBI

Wilkins SW, et al. (1996) Nature 384: 335–338.

No propagation

With propagation

X-RAY INTENSITY PROPAGATION (after some calculations...)

No propagation

With propagation

PAGANIN'S PHASE-RETRIEVAL = "UNDOING PROPAGATION"

Breast Imaging. Springer Nature, 2020.

PROPAGATION-BASED PROS AND CONS

Easiest phase-contrast technique to implement

> Widely used in research, data processing

	A high-coherence X-ray source is required (low power or synchrotron)	
robust	It does not give access to different contrast channels separately (phase and attenuation are linked)	

PROPAGATION-BASED BREAST CT @ SYNCHROTRON

UNIVERSITÀ DEGLI STUDI DI TRIESTE

PBI APPLICATIONS: CLINICAL VS PBI BCT

Clinically compatible radiation dose ~5 mGy

* Brombal, Luca, et al. "Image quality comparison between a phase-contrast synchrotron radiation breast CT and a clinical breast CT: a phantom based study." Scientific reports 9.1 (2019): 1-12.

PBI APPLICATIONS: VIRTUAL HISTOLOGY IN THE LAB

Piglet's esophagus

- ii)
- iii)
- mucosa iv)

L

OUTLINE

- X-ray imaging fundamentals
- Spectral imaging
- Phase-contrast imaging
- Spectral phase-contrast imaging

WHY SPECTRAL?

• Energy dependence of the attenuation coefficient is sensitive

WHY PHASE-CONTRAST?

SPECTRAL IMAGING

SPECTRAL PHASE-CONTRAST IMAGING

✓ BOTH SOFT TISSUE VISIBILITY AND MATERIAL QUANTIFICATION

✓ ROBUST METERIAL DECOMPOSITION THANKS TO THE LOW-NOISE PHASE-CHANNEL

✓ DECOMPOSITION OF 1 ADDITIONAL MATERIAL BY ADDING PHASE CHANNEL INTO DECOMPOSITION MATRIX

PHASE-CONTRAST IMAGING

SPECTRAL PHASE-CONTRAST MATERIAL DECOMPOSITION

UNIVERSITÀ DEGLI STUDI DI TRIESTE

EDGE-ILLUMINATION SPECTRAL PHASE-CONTRAST CT @ ELETTRA

tomography." Physics in Medicine & Biology 69.7 (2024): 075027.

SPECTRAL

Brombal, Luca, et al. "Edge-illumination spectral phase-contrast tomography." Physics in Medicine & Biology 69.7 (2024): 075027.

Attenuation [26 – 33] keV

Water

Attenuation > 33 keV

Phase (δ)

lodine

Calcium

SPECTRAL + PHASE-CONTRAST

Water

Brombal, Luca, et al. "Edge-illumination spectral phase-contrast tomography." Physics in Medicine & Biology 69.7 (2024): 075027.

Attenuation [26 – 33] keV

Attenuation > 33 keV

Phase (δ)

lodine

Calcium

SPECTRAL PHASE-CONTRAST: EX-VIVO MURINE MODEL

- Murine model (ex-vivo) in formalin
- Perfused (ex-vivo) with iodine-based contrast agent µAngiofil[®]
- In-plane pixel size 20 μm

Brombal, Luca, et al. *Phys. Med. Bio.* 69.7 (2024): 075027.

...TAKE HOME...

Detector-based spectral imaging already in clinics and in micro-CT laboratories \bullet

- clinics
- The combination of the two techniques will become an option in the future and research is starting now

Finanziato dall'Unione europea NextGenerationEU

• Phase-contrast is widely used in pre-clinical and non-clinical studies. It is moving its first step into

