

UNIANDES HEP LABORATORY

Carlos Avila

Physics Department Universidad de Los Andes, Colombia

UNIANDES - CERN

Starting from Beer-Lambert law:

$$I(E,z) = I_o Exp[-\mu(E,z)z]$$

For an object embedded in a medium:

$$I_2 = I_1 Exp[-\mu_1(l_1 - l_2)] \cdot Exp[-\mu_2 l_2]$$

Contrast can be defined as:

$$C = \frac{I_1 - I_2}{I_1} = 1 - Exp(-l_2(|\Delta \mu|))$$

For polychromatic sources:

$$I(x,y) = \int I_0(x,y) e^{-(\mu_1^\lambda - \mu_2^\lambda)T_0(x,y)} D(\lambda) d\lambda$$

4

Seminario Física Nuclear UNIANDES, 19/09/2022 Departamento de Física

X ray phase contrast imaging

Many biological and human tissues are soft: they have low X- ray absorption \rightarrow they are difficult to visualize with conventional X ray techniques:

The EM wave propagating through the sample is $\psi = \psi_0 exp\left(i\frac{n\omega}{c}z\right)$

In the x ray energy range the index of refraction can be written as $: n = 1 - \delta + i\beta$

- Phase effects are produced by δ
- Attenuation effects are caused by β

For many soft tissues δ is ~ 3 orders of magnitude greater than $\beta \rightarrow$ phase effects could enhance Image constrast

UNIANDES - CERN

Departamento X ray phase contrast imaging de Física (м)

- A microfocus X –ray source is required (focal spot of ~ μ m) to have a high spatial ٠ coherent beam
- A high resolution detector is needed to observe small changes in intentsity due to ٠ phase variations
- Photon energy measurements by the detector will allow to perform spectral image ٠ análisis.
- A grating (a mask or sand paper) diffracts the X-ray beam producing a known phase • shift, allowing tomeasure the phase shift induced by the sample.
- Specialized phase-retrieval algorithms need to be applied to the final image. Sept. 16 2024 **UNIANDES - CERN**

UNIANDES X RAY TEST SETUP

TIMEPIX DETECTOR

ALIGNMENT SYSTEM

X-ray Source Technical Specs

- Hamamatsu L10321
- W Anode, μFocus (5μm)
- Voltage: 0kVp to 100kVp
- Current: 0µA to 200µA
- Continuous Emission
- Air Cooling

MICROFOCUS X RAY TUBE

UNIANDES X RAY TESTING SETUP

X-ray Shielding Cabinet

Steel casing over Pb shielding Pb glass Heat Exhaust port Dimensions: 2m x 1m x 0.8m

Safety Interlocks

- \rightarrow Temperature (24°C max)
- \rightarrow Door
- → Software Comm (3s poll time)
- \rightarrow External Timer

Positioning System w/ 4 axis

- X: 10µm/step
- Y: 1.25µm/step, with position sensor
- Z: 10 µm/step
- θ: 0.03°/step

MEDIPIX Detector

An incident photon generates e-hole pairs

The reverse biasing of the sensor diode structure drives the charge to the readout chip

The charge is shaped and a threshold applied

Digital processing and readout occurs

The data is read out off the chip

Electronics for 1 pixel:

• Analog side:

Preamplifier, High Level Discriminator, Low Level Discriminator, 8-bit Pixel memory

• Digital side:

Window discrimination logic, 13bit Counter

>500 transistors/pixel

SPECIAL FEATURES OF THE TIMEPIX3 DETECTOR

Absorption Efficiency for Si, Se and CdTe Sensors

DAQ METHODOLOGY

Dataset:

- Frame stack with at least 6x Full dose
- 5s frames

Dose Reconstruction:

• Sum frames equal to desired dose

Flat Field Mask:

• As much dose as possible,

considering detector stability in time

NOISY PIXEL CORRECTIONS

STUDY OF A MEDIPIX3RX ODTE DETECTOR PERFORMANCE FOR LOW DOSE MAMMOGRAPHY IMAGING - 12

ROGLE, GERARDO | IEEE-RTSD | MANCHESTER, OCTOBER 30, 2019

C. Avila, UNIANDES

Seminario Física Nuclear UNIANDES, 19/09/2022

12

ENERGY CALIBRATION

• Linearity of the calibration with X-ray fluorescence and Radioactive Fe-55

Energy calibration linearity of the Timepix3 detector

CHARGE SHARING + CLUSTERING

• Charge-sharing in Photon-counting detectors

Requires individual photon energy information.

MAMMOGRAPHY APPLICATIONS

1 M. C. Jansen-van der Weide, M. J. Greuter, L. Jansen, J. C. Oosterwijk, R. M. Pijnappel, and G. H. de Bock, Eur Radiol, vol. 20, no. 11, pp. 2547-2556, Nov. 2010 .

 Microcalcifications present in malignant breast tumors are composed mainly of Calcium Hydroxiapatyte.¹

 Benefit of mammography screening could be reduced due to the risk of radiation-induced tumors.² Early diagnosis of breast cancer is vital for increased survival, with the lowest possible radiation exposure!

IMAGING SETUP - COMMERCIAL DEVICE

Hologic Selenia Dimensions w/ AWS5000

X-ray Source Technical Aspects

- W anode
- 50µm Rh filter
- Operated at 28kVp
- High power: 7kW
- Focal Spot size > 100µm

X-ray Detector Technical Aspects

- a-Se Direct Conversion FPD
- \bullet 200 μm thickness
- 70µm pixel pitch
- Charge-Integration

X-ray Imaging Geometry

- Source-Detector Distance: 70cm
- Source-Object Distance: 63cm

5 Selenia Dimensions with AWS 5000 – A flexible platform for the next dimension in breast imaging, Hologic Inc., Marlborough, MA, 2011

APPLICATIONS IN MAMMOGRAPHY

FIBERS (Nylon Fiber)		SPECKS (Al ₂ O ₃ speck)		MASSES (Thickness)	
1.	1.56 mm	7.	0.54 mm	12.	2.00 mm mass
2.	1.12 mm	8.	0.40 mm	13.	1.00 mm mass
З.	0.89 mm	9.	0.32 mm	14.	0.75 mm mass
4.	0.75 mm	10.	0.24 mm	15.	0.50 mm mass
5.	0.54 mm	11.	0.16 mm	16.	0.25 mm mass
6.	0.40 mm		-		- 17

Mammography Accreditation Phantom CIRS, model 015

DOSE CALIBRATION

Timepix Si Detector as Dose Calibrator:

- Highly stable detector
- Fast Acquisition Times: 1µs 10µs
- ESD [mGy] → total photon counts
- Cts/s and source pulse characterization

<u>6 Dose</u> Measurements:

- 40mAs → 1.79 mGy
- 50mAs → 2.09 mGy
- 60mAs → 2.52 mGy
- 70mAs 🗲 2.95 mGy
- 80mAs 🗲 3.36 mGy
- 90mAs 🗲 3.79 mGy

PHANTOM X-RAY IMAGES

nAs . MPX3RX CdTe 1mm 40mAs 40mAs 40mAs AMFPD A-Se 200µm 540um Specks 400um Specks 320um Specks 240um Specks

Seminario Física Nuclear UNIANDES, 19/09/2022

Universidad de Ios Andes

Seminario Física Nuclear UNIANDES, 19/09/2022

CNR - BACKGROUND SAMPLING

Background Calculation

$$\bar{B} = \frac{1}{N} \sum_{i=1}^{N} \sum_{k} (b_k)_i = \frac{1}{N} \sum_{i=1}^{N} B_i$$

Noise Calculation

$$\sigma_B = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\bar{B} - B_i)^2}$$

RESULTS – CNR PER REGION

- Average CNR for photon counting CdTe detector is greater at all doses and all speck sizes.
- Standard image quality could be achieved with lower radiation doses.
- MDPX + CdTe has better resolution for smaller crystal sizes which could be critical for early diagnosis.

Study of Contrast-to-Noise Ratio performance of a Medipix3RX CdTe detector for low dose mammography imaging

Gerardo Roque^{a,*}, Carlos Avila^a, Maria L. Pérez-Lara^a, Luis Mendoza^b, Simon Procz^a ^a Departamento de Física - Universidad de los Andes, Gra. 1 No. 18A-12, 111711, Bogotá D.C., Colombia ^b Departamento de Física - Universidad Milter Nava Granada, 110221, Cra. 11 No. 101-80, Bogotá D.C., Colombia ^c Freburger Masterioforschungerumm - Albert-Ludwig-Universit^c Perburger Masterios-Struße 21, 20104 Proburg L Br., Germany

Nuclear Inst. and Methods in Physics Research, A 992 (2021) 165000

	RECEIVED: September 16, 202.
	ACCEPTED: October 24, 202.
	PUBLISHED: ???, 202.
CHNICAL REPORT	
NR performa	nce of semiconductor materials for X-ray
naging of bre	ast calcifications
NR performation maging of bre	nce of semiconductor materials for X- ast calcifications

Seminario Física Nuclear UNIANDES, 19/09/2022

Universidad de TESTS WITH A HUMAN BREAST TISSUE PHANTOM

Phantom constructed with breast Human tissue and with hidroxiapatite crystasl embeded atifically by us. Tissue donated by a patient with breast reduction.

All ethical protocols and permissions were followed.

Sept. 16 2024

X-RAY image taken with a Selenia mammographic system of the Brest human phantom.

Hologic Selenia, Se-detector

1 mm CdTe-Medipix3RX

0.5 mm Si-Medipix3RX

Investigation of CdTe, GaAs, Se and Si as Sensor Materials for Mammography

Simon Procz[©], Gerardo Roque, Carlos Avila, Jorge Racedo[©], *Student Member, IEEE*, Roberto Rueda, Ivan Santos, and Michael Fiederle

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 12, DECEMBER 2020

IMPROVING PHANTOM REQUIREMENTS FOR MAMMOGRAPHY STUDIES

Patent: C. Avila. G. Roque, J. S. Calderon, Patente, "Fantoma de Calibración y diagnóstico", Octubre 2022, SIC 054-2019

J Bermúdez, G Roque, J Calderón, P Pardo, M Sánchez, V Ramos, C Ávila, "3D phantom for image quality assessment of mammography systems", Phys Med Biol. 2023 Oct 13; 68(20). <u>https://doi.org/10.1088/1361-6560/acfc10</u>

Impact of phase retrieval in Angiography

Raw Images

Phase Images

MICRO COMPUTED TOMOGRAPHY

Leg of a carpenter bee.

- A X20 magnification factor can be achieved to increase pixel resolution to about 3 um.
- our setup can take up to 3600 different projections for high resolution 3D images.
- We are working on configuring PCI and spectral CT's

Universidad de Atmospheric Muons

Muon flux at Bogotá = 1.53 \pm 0.03 $cm^{-2}s^{-1}$

Monserrate Hill

Instruments 2022, 6(4), 78; https://doi.org/10.3390/instruments6040078

UNIANDES - CERN

UNIANDES GEM DETECTORS

312

X-ray test with a full readout GEM detector

Atmospheric muon tracking with a full readout GEM detector

- Still need to improve efficency: ~80% for each GEM detector
- 24/7 operation requires further improvements in daq stability, specially temperature.

Scintillation matrx readout by SiPMs <u>Hodoscope</u>

UNIANDES HEP lab: some recent publications

- 1. Carlos A. Avila, Luis M Mendoza, Gerardo Alfonso Roque, Leonardo Loaiza, Jorge M. Racedo Roberto J. Rueda, "Feasibility study of a TIMEPIX detector for mammography applications", Proc. of SPIE Vol. 10572 105720Z-2, https://doi.org/10.1117/12.2285910
- 2. Juan Sebastián Calderón García, Gerardo Roque and Carlos Avila, "Construction of mammography Phantoms with a 3D printer and tested with a TIMEPIX system", Proc. of SPIE Vol. 10572, 105720Y (2017), https://doi.org/10.1117/12.2285897
- 3. J.S. Useche Parra and C. Avila, "Estimation of cosmic-muon flux attenuation by Monserrate Hill in Bogota", *Journal of Instrumentation* 14 P02015, 2019, <u>https://doi.org/10.1088/1748-0221/14/02/P02015</u>
- 4. S. Procz, C. Avila, J. Fey, G. Roque, M. Schuetz, E. Hamann, "X-ray and gamma imaging with Medipix and Timepix detectors in medical research", Radiation Measurement, Vol. 127, 2019, <u>https://doi.org/10.1016/j.radmeas.2019.04.007</u>
- 5. C. Navarrete, S. Procz, M. Schütz, G. Roque, J. Fey, C. Avila, A. Olivo, M. Fiederle, "Spectral X-ray phase contrast imaging with a CdTe photon-counting detector", Nuclear Instruments and Methods in Physics Research Section A, Volume 971, 2020, https://doi.org/10.1016/j.nima.2020.164098
- S. Procz, G. Roque, C. Avila, J. Racedo, F. Rueda, I. Santos, M. Fiederle, "Investigation of CdTe, GaAs, Se and Si as Sensor Materials for Mammography", *IEEE Transactions on Medical Imaging*, June 2020, doi: 10.1109/TMI.2020.3004648, , <u>https://doi.org/10.1109/TMI.2020.3004648</u>
- S. Procz, G. Roque, M. Perez, L. Mendoza, C. Avila, "Study of Contrast-to-Noise Ratio performance of a Medipix3RX CdTe Detector for Low Dose Mammography Imaging", Nuclear Instruments and Methods in Physics Research Section A, Volume 992, 2021, <u>https://doi.org/10.1016/j.nima.2020.165000</u>
- 8. C. Avila. G. Roque, J. S. Calderon, Patente, "Fantoma de Calibración y diagnóstico", Octubre 2022, SIC 054-2019
- 9. C. Borja, C. Avila, G. Roque, M. Sanchez, "Atmospheric Muon Flux Measurement near Earth's Equatorial Line ", *Instruments* **2022**, *6*(4), 78; <u>https://doi.org/10.3390/instruments6040078</u>
- 10. J. S. Useche Parra, M.K. Schütz G. Roque, J. Fey, C. Avila, M. Fiederle*a* and S. Procz, "Dose estimation in X-ray backscatter imaging with Timepix3 and TLD detectors", *JINST* **18** P05042 <u>https://dx.doi.org/10.1088/1748-0221/18/05/P05042</u>
- 11. J Bermúdez, G Roque, J Calderón, P Pardo, M Sánchez, V Ramos, C Ávila, "3D phantom for image quality assessment of mammography systems", Phys Med Biol. 2023 Oct 13; 68(20). <u>https://doi.org/10.1088/1361-6560/acfc10_PMID:37733054_</u>.
- 12. L. Mendoza, C. Avila, R. Rodríguez L. Loaiza and G. Roque. "CNR performance of semiconductor materials for X-ray imaging of breast calcifications", JINST 18 T11001,). https://doi.org/10.1088/1748-0221/18/11/T11001
- = Nombre de estudiante participando del estudio

GRACIAS!