Semiconductor Detectors

Simon Procz

University of Freiburg FMF Freiburg Materials Research Center

UNIANDES PARTICLE DETECTOR SCHOOL DECEMBER 13 - DECEMBER 15

Freiburg / Germany

Freiburg / Germany

- Semiconductor Basics
- Growth of Silicon
- Non-Hybrid Semiconductor Detectors
- Signal Formation and Processing in Detectors
- Hybrid Pixel Detectors: Timepix & Medipix

Formation of Energy Bands in a Semiconductor

UNI FREIBURG

Metal

Semiconductor

Isolator

UNI FREIBURG

Movement of Elektrons / Holes

Semiconductor Band Diagramm

Source: Sze, Physics of Semiconductor Devices

UNI FREIBURG

Semiconductor Band Diagramms

Source: Sze, Physics of Semiconductor Devices

Siemens Process

SIEMENS REACTOR

www.mersen.com | www.schott.com | www.pv-magazine.com

Silicon from Siemens Process

Czochralski Growing

S.M. Sze: Semiconductor Devices

300mm Si Crystal by Czochralski

Silicon Dicing

300mm vs 450mm wafer

Attenuation Mechanisms in Si

UNI FREIBURG

Microstrip Detector

8 aluminium backplane (positive HV)

Microstrip Detector at CMS

Quelle : CMS Collaboration, HEPHY Vienna

Use of Microstrip Detectors at CERN

Hybrid Silicon Pixel Detectors

But because of low volumes bump bonding is still expensive Source: R. Ballabriga / CERN

Semiconductor Sensor

$$E_{pair} \approx 2.8 \times E_g + 0.6 \text{ eV}.$$

Sensor dimensions to scale (55µm pixel pitch, 300µm thick sensor)

ΗV

Cluster Analysis for Timepix Energy Calibration with Thick CdTe Sensors

UNI FREIBURG

Induced Charge on Detector Electrodes

- Signals on detector electrodes arise from motion of charge carriers
- Induced current is derived from laws of electrostatics
- Method: Shockley-Ramo theorem: the instantaneous current induced on a given electrode is equal to

$$i = q\vec{v} \cdot \vec{E}_0$$

where q is the charge of the carrier, v is its velocity and E_0 is the weighting field

• The induced charge (Q) on the electrode is given by

$$Q = q\Delta\varphi_0$$

where $\Delta \varphi_0$ is the weighting potential from the beginning to the end of the carrier path

S.Ramo, Proc. IRE, 27 (1939) p.584 W.Shockley, J. Appl. Phys. 9, 635 (1938) V. Radeka Ann. Rev. Nucl. Part. Sci. 1988 38: 217-277 Gatti et al., NIMA 193 (1982) 651

Signal induction in the pixel electrodes

Pixel Detectors

		Channel	Energy	Peaking time	Buttable	Technology		
Name	Matrix	size (µm²) †	thresholds	(ns)	sides	(µm)	Specific information	References
							Fine Pitch mode, Single Pixel mode, Compatibility with	
Medipix3 (1)	256x256	55x55	2	120	3	0.13	Through Silicon Vias (TSVs)	[33,34,35,36]
							Fine Pitch mode, Charge summing and hit allocation	
Medipix3 (2)	256x256	55x55	2	120	3	0.13	algorithm, TSVs	[33,34,35,36]
							Data push mode, Time-over-Threshold (ToT) energy	
Timepix3 <i>(3)</i>	256x256	55x55	10bits	30	3	0.13	measurement, charge sharing correction possible off-chip	[37]
Pixirad Pixie II (4)	512x476	52x60	2	300	2	0.18	Hexagonal pixels, equivalent pixel pitch of $55.6 \mu m$	[38]
							On-pixel successive approximation Analog to Digital	
Samsung PC (5)	128x128	60x60	3	NS	0	0.13	Converter (ADC)	[39]
Pixirad Pixie III (6)	512x402	62x62	2	125	2	0.16	Large area ASIC (31.7x25mm ²), Charge summing algorithm	[40]
Eiger (7)	256x256	75x75	1	30	3	0.25	Radiation hard electronics design	[41]
PXD23K (AGH) <i>(8)</i>	128x184	75x75	2	48	3	0.13		[42]
X-Counter PC <i>(9)</i>	256x256	100x100	2	NS	3	NS	Charge summing algorithm	[43]
PXD18K (AGH) <i>(10)</i>	96x192	100x100	2	30	3	0.18		[44]
FPDR90 (AGH) (11)	40x32	100x100	2	28	3	0.09		[45]
AGH_Fermilab (12)	18x24	100x100	2	48	0	0.04	Charge summing algorithm	[46]
Medipix3 <i>(13)</i>	128x128	110x110	8	120	3	0.13	Spectroscopic mode, Single Pixel mode, TSVs	[33,34,35,36]
Medipix3 (14)	128x128	110x110	8	120	3	0.13	Spectroscopic mode, Charge summing algorithm, TSVs	[33,34,35,36]
XPAD3 (15)	80x120	130x130	2	150	3	0.25		[47,48]
Pilatus 2 (16)	60x97	172x172	1	110.00	3	0.25	Radiation hard design	[49,50]
Pilatus 3 (17)	60x97	172x172	1	110.00	3	0.25	Radiation hard design, instant retrigger technology	[51]
Telesystems (18)	40x40	200x200	4	300-500	3	0.25		[52]
Dosepix <i>(19)</i>	16x16	220x220	16	300	3	0.13	ToT energy measurement, 16 digital thresholds	[53]
Siemens PC (20)	64x64	225x225	2	20	NS	NS	Pile-up trigger method	[54,55,56,57]
Hexitec (21)	80x80	250x250	14bits	2000	3	0.35	Digitization of pulse amplitude with off-chip ADC, TSVs	[58]
							Simultaneous charge integration and photon counting	
CIX 0.2 <i>(22)</i>	8x8	500x250	1	NS	1	0.35	measurement	[59,60]
Philips Chromaix								
(23)	16x16	300x300	4	20	2	0.18		[61]
Ajat-0.35 (PC) (24)	32x64	350x350	1	1000	3	0.35		[62,63]
Ajat-0.35 (ADC) (25)	32x64	350x350	64	1000	3	0.35	On-pixel ADC	[62,63]
DxRay-Interon (26)	16x16	500x500	4	10	NS	NS		[2,64]
Ajat-0.5 (27)	44x22	500x500	2	1000-2000	3	0.35		[65]

FREIBURG

111:5

Source: R. Ballabriga / CERN

Pixel Detectors

	Max count rates	Max count rates	Electronics noise		
Name	(ivicps/pixel)	(IVICPS/mm²)	(e ⁻ r.m.s.)	Energy resolution (FWHIVI)	Power/pixel (µw)
Medipix3 (FPM-SPM) (1)	2.50	826	80	1.37keV @ 10keV, 300um Si	7.5
Medipix3 (FPM-CSM) (2)	0.50	164	174	2.03keV @ 10keV, 300um Si	9.3
Timepix3 <i>(3)</i>	1.3E-3	0.43	62	4.07keV @ 59.5keV, 300um Si	15.2
Pixirad Pixie II (4)	0.5	162	50	1.73keV @ 60keV, CdTe	12.5
Samsung PC <i>(5)</i>	NS	NS	68	NS	4.6
Pixirad Pixie III (6)	1	260	50(SPM)/100(CSM)	2keV @ 20keV, CdTe	34
Eiger <i>(7)</i>	4.2	747	121/160/185	NS	8.8
PXD23K (AGH) <i>(8)</i>	8.55	1519	90	NS	25
X-Counter PC <i>(9)</i>	1.2	120	NS	10KeV @60keV, CdTe	NS
PXD18K (AGH) <i>(10)</i>	5.8	580	168	NS	23
FPDR90 (AGH) <i>(11)</i>	8.55	855	91	NS	42
AGH_Fermilab (12)	NS	NS	84 (SPM)/168 (CSM)	NS	34
Medipix3 (SM-SPM) <i>(13)</i>	4.55	376	80	1.43keV @ 10KeV, Si	30
Medipix3 (SM-CSM) (14)	0.34	28	174	4.4keV @60keV. 2mm CdTe	37.2
XPAD3 (15)	2	118	127	2.3keV @59.5keV CdTe	40
Pilatus 2 <i>(16)</i>	6	203	123	1keV @ 8keV	20.2
Pilatus 3 (17)	15	507	123	1keV @ 8keV	20.2
Telesystems (18)	0.8	20	NS	4.88keV @ 122keV	94.4
Dosepix (19)	1.64	34	150	3.12keV @ 35keV	14.6
Siemens PC (20)	40	790	NS	NS	NS
Hexitec (21)	0.001	0.02	NS	0.8keV @ 60keV	220
CIX 0.2 (22)	12	96	330	NS	3200
Philips Chromaix (23)	38	422	400	4.7keV @60keV (1 channel)	3000
Ajat-0.35 (PC) (24)	2.2	18	NS	4keV @122keV, CdTe	390.6
Ajat-0.35 (ADC) (25)	4.88E-5	4.E-04	NS	4keV @122keV, CdTe	390.6
DxRay-Interon (26)	13.25	53	NS	7keV @60keV, CdTe	NS
Ajat-0.5 <i>(27)</i>	NS	NS	NS	4.7keV @122KeV, CdTe (single channel)	413.2

Source: R. Ballabriga / CERN

Medipix Detectors

- Developed by Medipix2 / Medipix3 Collaborations @ CERN
- Medipix detector: Electronics chip (ASIC) + sensor

Medipix3 single 14x14 mm²

Medipix2 hexa 28x42 mm²

Medipix3 Collaboration

- University of Canterbury, Christchurch, New Zealand
- CEA, Paris, France
- CERN, Geneva, Switzerland,
- DESY-Hamburg, Germany
- Albert-Ludwigs-Universität, Freiburg, Germany
- University of Glasgow, Scotland, UK
- Leiden University, The Netherlands
- NIKHEF, Amsterdam, The Netherlands
- Mid Sweden University, Sundsvall, Sweden
- IEAP, Czech Technical University, Prague, Czechia
- ESRF, Grenoble, France

- Universität Erlangen-Nürnberg, Erlangen, Germany
- University of California, Berkeley, USA
- VTT, Information Technology, Espoo, Finland
- KIT/ANKA, Forschungszentrum Karlsruhe, Germany
- University of Houston, USA
- Diamond Light Source, Oxfordshire, England, UK
- Universidad de Los Andes, Bogota, Colombia
- University of Bonn, Germany
- AMOLF, Amsterdam, The Netherlands
- Technical University of Munich, Germany
- Brazilian Light Source, Campinas, Brazil

Medipix ASIC

Medipix 2 Pixel Cell

Source: R. Ballabriga / CERN

Photon Counting Detector - Applications

Implementation and comparison of CdTe sensor configurations in a Timepix based γ -camera – 2019 IEEE NSS MIC

Imaging: Raw Image vs Flatfield Corrected Image

Raw Image

Flatfield Image

Division: Flatfield Correction
Medipix3 Biological Imaging: Dynamic Range

Histogramm range: 0 - 85 %

MPX3 Si 55µm / 7x8 tiles 20kV / 100µA / Mag. 4x Object height ~25mm

THE REAL PROPERTY

Medipix3 Biological Imaging: High Contrast Objects

TPX, MPX-mode 55μm GaAs 500μm Bias: -230V 8x5 tiles, width 34mm

MPX3 Si 55µm SPM HGM 24-Bit 8x8 tiles 27kV / 120µA Mag. 2x

Object height ~50mm

Medipix3 Biological Imaging: High Frame Rates

MPX3 Si 55µm SPM HGM 12-Bit 1 tiles (256x256) 10 frames/s

45kV / 100μA Mag. 3x-5x

Object height ~25mm

Energy Selective, Planar Imaging MPX3 CdTe 1mm - Color Mode 110µm

Piezo Lighter

Magnification: 1.3x Bias: -320V MPX3 CdTe 1mm Colour Mode 4x11 tiles

- A: Logarithmic grayscale sum
- B: Coloured X-ray image

C: Linear grayscale sum

Medipix3 Biological Imaging: Art

Mammography

Mammogram

Courtesy of breast360.org

https://breast360.org/wp-

content/uploads/filer_public_thumbnails/filer_public/0d/e5/0de59648-ca2e-4005be2c-b315c3664ddb/bts-_mammo_3.png__1692x1082_q85_crop_subsampling-2_upscale.png

Commercial Mammography Phantom: Radiography

CdTe, threshold 7.5 keV, magnification: 1.15x, 16x8 tiles

Sensor Comparison

Source: LeedsTestObjects.com

Spatial Resolution Test

Nyquist limit: 9.1 lp/mm a) GaAs @ 7.5 keV b) GaAs @ 12.5 keV c) CdTe @ 7.5 keV

Human Mammography Phantom Comparison

Si 300µm 40mAs CdTe 1mm 40mAs

Se Clinics 40mAs, contrast enhanced Se Clinics original

40 mAs = 44 % of standard dose

Small Crystals: CNR to White Backgr. (3o Fractile)

Image Quality: Si vs CdTe

Si 300 µm

CdTe 1 mm

Unfiltered W-anode input spectrum: Simulation of G. Blaj (SLAC)

- Horizontal direction:
 8 Different materials
- Vertical direction: Varying thickness
- Lower area:
 - 3 layers of aluminum in different thicknesses

Absorption Phantom Photography

Empty field for normalization

31.10.2019

Material discrimination and identification with Medipix3RX and Timepix3 detectors with CdTe sensors

Absorption Phantom – Medipix3RX

31.10.2019

Material discrimination and identification with Medipix3RX and Timepix3 detectors with CdTe sensors

K-Edge Imaging: Evaluation of the Results

Spectroscopic Detector (Timepix)

UNI FREIBURG

Charge Sharing Effects - Improvement Through Clustering

Charge Sharing Mechanisms

Reduction of Charge Sharing:

- Collecting carriers more quickly
 - Reducing sensor thickness
 - Increasing field strength
 - Using material with higher mobility
- Small pixel effect

SHE

Charge Sharing Effects - Improvement Through Clustering

No Subresolution: highest counting pixel gets hit

Subresolution: calculated by center of mass

Center of Gravity: Subpixel Spatial Resolution

Timepix 1mm CdTe

Left: No cluster analysis 8.5 LP/mm

Right: Center of mass calc 57 LP/mm

IPix: Gamma Camera

Gamma Imaging

Source: F. Bonnet, Canberra Inc.

Measurement Contest Nuclear Power Plant*

Co60, 21 Cps, acq. time for loc. 115s

- Distance: 15 Meter
- 3mm @-660 V

ROBOTICS

*2nd European Robotics Hackathon, EnRicH 2019 Zwentendorf Nuclear Power Plant (NPP) Austria July 1st - 5th, 2019

Signed Vincent van Gogh

La Crau with Montmajour in the backgroud

~1888

INSIGHTART

Timepix3 Particle Track Measurement

Energy (keV)

Bias 100V, Ikrum 5, with time walk correction

Timepix3 Particle Track Measurement

Note: Not to scale!

Bias 100V, Ikrum 5, with time walk correction

Test with 120GeV/c Pion Track

UNI FREIBURG
Timepix in Space at ISS

REM Dose Rate Data (µG/min)

10² Average Dose Rate [µGy/min] 80 60 40 10 0.349 0 1 -20 -40 -60 10-1 3 mG -150-100-50 50 100 150 0 5.5 mGy/d Longitude [°] D03-W0094 (S/N 1007): 2014-11-01 \rightarrow 2015-02-01

Latitude [°]

Source: University of Houston / IEAP Prague / NASA

Timepix - 4s Exposures in Space

South China Sea

South Atlantic Anomaly

Summary, Conclusions and Outlook

- Semiconductor detectors: important role in HEP, medical imaging, X- and γ -ray imaging, ...
- High quality sensors necessary for high SNR, high-Z for high quantum efficiency
- Single photon analyzing detectors (Timepix) will offer totally new options
- New algorithms and ASICs are necessary for calibration, data processing, data analysis, visualization

N N N N

Per Pixel Calibration

Equalization methods:

- noise floor
- test pulse
- counter adjustment
- spectral line

$$C + A \cdot \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-x_c}{\sigma}\right)^2} + \left(B - A \cdot \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-x_c}{\sigma}\right)^2}\right) \cdot \Theta\left(x_c - 1.4\sigma - x\right)$$

MPX3 Si Energy Deposition Spectrum

Timepix Energy Calibration

Source: Elias Hamann, Universität Freiburg / Jan Jakubek, Advacam

Medipix & Timepix

	Medipix2	Medipix3	Timepix	Timepix3
Pixel side (μm)	55	55/110	55	55
Technology (nm)	250	130	250	130
# pixels in x and y	256	256/128	256	256
Readout architecture	Frame based Sequential RW	Frame based Continuous RW	Frame based Sequential RW	Data driven/ frame based
Charge summing and allocation mode (CSM)	No	Yes	No	No
# thresholds	2 (window discriminator)	2/4/8 Seq RW 1/4 Cont RW	1	1
ТоТ/ТоА	No	No	ToT (14 bit) OR ToA (14 bit, 10ns precision)	ToT (10 bit) AND ToA (18 bit, 1.56ns precision)
Front end noise (e ⁻ rms)	110	80(SPM) 174(CSM)	100	62
Minimum Threshold (e ⁻)	900	500 (SPM) 1000 (CSM)	650	500
Peaking time (ns)	150	120	100	30
Max count rate (Mc/mm ² /s)* *very sensitive to exact test conditions	826	614 (SPM 55μm) 114 (CSM 55μm) 130 (SPM 110μm) 29 (CSM 110μm)	-	0.43 (data driven)

Source: M. Campbell / CERN

Sensor Homogeneity Comparison

Sensor raw image: Sid Tes

Sida 205 000 ptm Minedipits BRe%a HV: +2180 V Defective pixels: pixels% 0.067% GaAs sensor by Tomsk State University

Courtesy of D. Pennicard / H. Graafsma (DESY)

Single Layer Compton Camera with MiniPIX TPX3

¹³¹Iodine gamma source

- 3 different lodine solution in small bottles positioned in a room at different positions
- Distance from detector 3.5 m (activity 10's of MBq)
- Mapped on photograph of the room
- Sources located correctly within minutes
- Image took hours to collect

Reconstruction of position of three ¹³¹I gamma sources (364 keV)

