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What are muons (4) and where they come from?

Fundamental particles
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Cosmic Rays are radiation from outer space
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Atmospheric muons are produced when Cosmic Rays

interact with the atmosphere.




Why do we measure muons?

Its production is closely related to neutrino production Altitude (km)
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How can we detect muons?

Plastic Scintillators
Cherenkov Effect

Emulsion Films

Gaseous Detectors (GEM)

Detection techniques are usually combined

with computer simulations

e CORSIKA (COsmic Ray Simulations for
KAscade)

e MUSIC (MUon SIimulation Code)

e GEANT4 (GEometry And Tracking)




Atmospheric Muon Applications
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Muon imaging radiography / tomography of geological

and archaeological structures.
Monitoring of mechanical stability of buildings,

radioactive material and blast furnaces processes.
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(2018) L. PrestiThe MEV project: Design and testing of a new high-resolution telescope for muography of Etna Volcano
(2003) Priedhorsky - Detection of high-Z objects using multiple scattering of cosmic ray muons
(2019) Bonomi - A Cosmic Rays Tracking System for the Stability Monitoring of Historical Buildings
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Muon Imaging (Muography)

Measuring flux change: open sky flux vs. flux through a target. Imaging of objects from
hundred meters to km.

Measuring change of trajectories due to scattering with a target. Only useful for high Z
targets and in mm to cm scale.

Hybrid techniques for intermediate objectives
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Absorption/Attenuation/Transmission Muography

e For monitoring of large objectives.

e Based on the probability of a muon to cross the target (depends on the muon energy).

e Muon flux attenuation compared with open sky flux.
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Diagrams taken from
(2019) L, Bonechi, Atmospheric muons as an Imaging Tool
(2018) S, Procureur, Muon Imaging: Principles, techniques and applications.



WaTo Experiment, Saclay France 2016

Micromegas Detector (Micro-MEsh Gaseous Detector)
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Fig. 5. Muography of the Saclay water tower with 4 days of data during the phase 2, with the water (left) and during the emptying (right).
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Images taken from:
(2016) S, Bouteille - A Micromegas-based telescope for muon tomography: The WatTo experiment



Muography of Satsuma-lwojima Volcano, Japan 2014
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Image taken from:
(2019) Tanaka - Japanese volcanoes visualized with muography



Scattering Muography

e For monitoring of containers or small targets.
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Diagrams taken from
(2019) L, Bonechi, Atmospheric muons as an Imaging Tool
(2018) S, Procureur, Muon Imaging: Principles, techniques and applications.
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Scattering Muography and Hybrid techniques

(2010) Gnavo - Imaging of high-Z material with a muon tomography station based on GEM detectors.

(2015) Blanpied - Material discrimination using scattering and stopping of cosmic ray muons and
electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

1



The p-niandes Muon Detector

Each detector is composed of:
e Plastic Scintillator
e Photo multiplier tubes (PMT)
e Mechanical support



How a PMT works?

Photo-electric effect

Photocathode
{ Focusing electrode  Photomultiplier Tube (PMT)
lonization track | /
I .’1 - N
I ..,--’/.
2, 5 | >
M| N ARARRR
‘N\ Y » &5 Y 9 J % 0

IR

Low energy photons [ ]

f ) Connector

High energy [ =" %% lx ,/',/ J j ,/ ,/
photon 5Py ' h

." |A '
Scintillator Primary Secondary Dynode  Anode pins
electron electrons

13



p-niandes Data Acquisition Electronics

High Voltage Source

4 Channels

Polarity +/-

Range from 0 to 5 kV
(Detector power supply)

Delay Generator

4 Channels

Delays from ns to s scale
(Allows acquire data after
triggering signals)

Fan In/Out

4 Channels

Reply Signals

(For monitoring and
clone signals)

Logic Unit

From 1 to 4 input.
Coincidence levels:
OR/2-AND/3-AND/
Majority
(Triggering signal)
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Discriminator

8 Channels

Controllable pulse width
(From 4ns to 75ns) and
thresholds levels

(Signal digitization)

BCD Counter
2 Channels

(Count number of
coincidences)
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p-niandes Data Acquisition Electronics

Camac BUS
(Allows PC-Electronics
communication)
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p-niandes Data Acquisition Electronics
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H-niandes Triggering System

The “trigger” is the signal that determines

if an event is of physical interest.

Coincidence Diagram
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p-niandes Timing Diagram
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p-niandes Timing Data (TDC)
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p-niandes “Energy” Data (QDC)
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Detector Performance
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(Fake detections) Independent Muon Coincidences
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Directional Filter fFor Muon Detection
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First Muography of Monsterrate Mountain
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Open sky muon Flux measurement Monserrate density mapping
(2018) Jairo Fajardo (2018) Jairo Fajardo
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iThanks for your time!
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