
Integr Equat Oper Th 0378-620X/93/030333-2751.50+0.20/0 
Vol. 16 (1993) (c) 1993 BirkhNuser Verlag, Basel 

The Geometry of the Space of Selfadjoint 
Invertible Elements in a C*-algebra 

GUSTAVO CORACH, HORACIO PORTA AND LXZARO RECtIT 

Let A be a C*-algebra with identi ty and G * the  set of all selfadjoint 

invertible d e m e n t s  of A. This  paper  is a s tudy of the  geometr ic  propert ies  

of the  manifold  G *. The  action of the  group G of invertible elements  of A 
over G*, given by 9" a = ( g - 1 ) * a g - 1 ,  defines Banach homogeneous  spaces 

G --4 G ~,a, where G ~'a is the  orbit of a 6 G ~. It tu rns  out  tha t  the  G *,a are 

open and closed subsets of G ~ and the  principal  bundles  G --* G ~'a carry 
na tura l  connections.  The  horizontal  lifting of (differentiable) curves ? in G ~ 

are controlled by the  differential equat ion F 1 . i  ~ = - 7 7 7  , which is called here 
the  transport equat ion (an al ternat ive approach  based on mult ipl icat ive 

integrals is given in Section 8). Several G - b u n d l e s  are s tudied,  in par t icular  

the  t angen t  bundle  T G t  One relevant point  here is tha t  the  (left) polar 

decomposi t ion  a = up (a C G ~, u > 0, p uni tary)  provides two structures:  

first it is easy to see tha t  p is a reflection so tha t  It(a) = p defines a map  

7r : G ~ ~ P where P is the  set of all p 6 A such tha t  p* = f l - 1  = fl; second 

for a t angen t  vector X 6 T~G ~ the  n o r m  I[Xll~ = ]1~'-1/2XI/-1/2 H defines 

a Finsler s t ruc ture  on the  bundle  TG ~. This bundle  carries a canonical 

connect ion de te rmined  by the  t r anspor t  equat ion,  wi th  covariant derivative 

defined by 

D x Y  = X ( Y )  - I ( X a - I Y  + Y a - I X )  
2 
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and parallel t r anspor t  along a curve 7 in G ~ given by the  t r anspor t  funct ion 

F of 7- Thus  T G  ~ is endowed wi th  the  result ing s t ruc ture  of Finsler bundle  

with a t r anspor t  connection.  The  exponent ia l  map  of this connect ion is 

1 - - 1 . ~  1 a - - 1 . .  
eXPa X = e - �89  �9 a = eT a Zae7 n. 

The  restr ict ion of the  bundle  T G  s to P splits as TGSIP = T P  (9 N where 
the  "normal  bundle"  N has over p 6 P the  fiber 

Np = {X  �9 T e a  s : X p  = pX} .  

The restr ict ion to N of the  exponential  map  is a di f feomorphism from N 

onto G ~ which preserves the  fibers. In Cheeger-Gromoll  theory  (see [3]) 

this is expressed by saying tha t  P is a soul of G ~. 

Re turn ing  to the  s tudy  of the  flbration ~r : G s --+ P we give a de- 

scription of the  fibers of 7r and of the  group of all g C U tha t  preserve 

the  fibers. The  tangent  m a p  T~r : T G  s ---+ T P  decreases norms  in the  

sense tha t  II(T,~r)Xll < IIxt l ,  ( x  6 T,~G'). This theorem is based on the  

inequali ty l ISTS  -1 + S-1TS[]  >_ 2I[T][ valid for bounded  linear operators  

S, T on a Hilbert  space wi th  S selfadjoint and invertible [4]. The  ma in  

result of this paper  is tha t  given two points  in the  same fiber G~ there is 

a unique geodesic fully contained in G~ joining them,  which is the  shortes t  

curve in G s with the  same endpoints .  A basic tool of the  proof  is the  above 

ment ioned  contract ion proper ty  of T~r. 

In finite dimensional  cases, R iemann  metr ics  can be defined on T G  ~ 
and we show an example  where the canonical connect ion is the  Levi-Civita 

connect ion of such a metric.  This  paper  is par t  of a series devoted to the  

s tudy  of the  geometry  of several reductive homogeneous  spaces which ap- 

pear  na tura l ly  in Banach and C*-algebra theories: the  space of idempoten t s  

in a C*-algebra ([17], [18], [6]), the  space Qn of n-tuples of idempoten t s  
decomposing the  ident i ty  in a Banach algebra [5], the  space of relatively 

regular e lements  in a Banach algebra [8]. The  subset A + of G * of all posi- 
tive invertible elements of A is also considered in [7], where it is shown tha t  

the well-known Segal's inequali ty (see [21]) l ie  (x+Y)l] <-]le(X/2)eYe(X/2)lt, 
where X,  Y are selfadjoint elements of A, is equivalent to the  proper ty  tha t  
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the exponential  map of A + increases distances, a property  which A + shares 

with Riemannian manifolds with nonpositive curvature. The geometry of 

some Hilbert homogeneous spaces has been previously studied by P. de la 

Harpe ([12], [13]) and Finsler s t ructure of some groups of operators on a 

Hilbert space has been studied by Atkin ([1], [2]) who proves some results 

on uniqueness and minimali ty of geodesics. The t ransport  equation of Q~ 

has been independent ly  found by Daleckii and Kato (see [9], [14] and also 

[15], [10]); its geometric meaning, however, was first established in- [5]. In 

the case n = 2, Q2 can be identified with the space of all the reflections and 

its t ransport  equation takes the same form as tha t  of G ~, a phenomenon 

which will be studied in a forthcoming paper. 

1. P r e l i m i n a r i e s  

Let A be a C*-algebra with 1 represented as an operator  algebra in a 

Hilbert space H. Also denote by G = G(A)  the group of invertible elements 

of A and G s = G~(A)  the space of invertible selfadjoint elements of G. For 

each a 6 G ~ there is a form B a defined on H by B a ( x ,  y) = (ax,  y). The 

B a's are hermit ian non-degenera te  bilinear forms. The Ba-adjo in t  of u C A 

is u a = a - l u * a .  Hence the uni tary group U a of B a consists of the u 6 G 

with the equivalent properties u -1 = a - l u * a  or ( u * ) - l a u  -1 = a. 

In order to s tudy the natural  geometry of G s we introduce the following 

action of G on GS: 
g . a = (g-1)* ag-1 .  

This action fits into the following picture: consider E = G ~ x H as a 

product  bundle over G s with fiber Ea = H over a 6 G ~. Then  E is a 

pseudo-Riemannian  bundle when each fiber E ,  is provided with the form 

B a . 

E can also be considered as a G-bundle  with the action 

9(a ,x)  = (9.  a, gx). 

It is clear that  this action is isometric on fibers (because Bg'a(gx ,  gy) = 

B a ( x , y ) )  and tha t  the isotropy group of a 6 G ~ for the action g �9 a is the 

uni ta ry  group U a of the form B a. 
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Using Bg'a(gx, g y ) =  Ba(x , y )  with g = a(b) the  geometr ic  interpreta-  

t ion in terpre ta t ion  of a is tha t  a(b) an isometry f rom Ea = (H, B a) onto 

Eb = ( H ,  Bb). 
In the  sequel we denote  G ~'a the  orbit  {9" a; g C G} of a. 

1.1 PROPOSITION 

each a 6 G ~, the  map 

The orbits G s'a are open and closed in G s and for 

G --+ G ~'a, g --~ g . a 

is a smoo th  principal bundle with group U ~. 

P r o o f i  It suffices to show tha t  G --* G s'a has a smoo th  local section near 
a 6 G s. For b 6 G s near  a put  or(b) =- (b- la)  1/2. Here b- la  is close to 1 

and the  square root  has the  usual meaning (see [20] for example) .  Rout ine  

calculations show tha t  

o(b) . a = (((b- '  a) l /2)- ' )*a((b - I  a)I/2) -1 =- b 

so tha t  cr is a local section, as needed. This  completes  the  proof  of 1.1. 
It is readily seen tha t  G s has a functorial  character  in the  category 

of C*-algebras and *-homomorphisms.  In part icular ,  using Michael 's result 

[16] tha t  G(A) -~ G(B)  is a Serre fibration if f : A ~ B is a surjective 

*-homomorphism,  Proposi t ion  1.1 implies tha t  f :  GS(A) ~ GS(B) is onto 

if and  only if every componen t  of GS(B) contains some element  of the  image 

of f .  This  result is useless in the  case when A is the  algebra of all bounded  

linear operators  on a Hilbert space H and B is the  quot ient  of A by the  
ideal of all compact  operators  ( the Calkin algebra of H)  since in this case 

the  na tura l  project ion GS(A) --* Gs(B) is onto ([13], p. 197). However in 

general there is no way of lifting elements and the  criterion above may be 

adequate.  
We use a = zzp as the  polar  decomposi t ion  of a wi th  v = lat -= (a2) 1/2 > 

0 and wi th  p unitary. Since la[ and a commute  we have 

p* = ( l a l - X a ) *  = a l a l - '  = lal-'  = P 

whence p is a selfadjoint uni tary  element of A, or p* = p-1 = p. 
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2. T h e  canonical connection 
Denote by H a the Lie algebra of U a. It is clear tha t  H a is a subalgebra 

of the Lie algebra ~ of G and that  G can be identified with A (since G is open 
in A). In this identification, H a corresponds to the set of Ba-an t i symmet r ic  

elements of A, i. e., 

H a = {x  C A; a - l x * a  = - x } .  

2.1 PROPOSITION Le t  S ~ denote  the  set o f  e lements  s o f  A which  are 

B a - s y m m e t r i c ,  i. e., w i th  a - l  s*a = s. T h e n  A = H a �9 S a and  the  e lements  

o f  U ~ conjugate  S a in to  itself." i f  s E S ~ and  g C U ~, then  gsg -1 E S a. 

Proof.- Only the last s ta tement  needs a proof: 

a - l  ( g s g - 1 ) * a  = ( a - l  ( g - 1 ) * a ) (  a - l  s*a)(  a - l  g*a) = gsg -1 .  

2.2 PROPOSITION For g C G define W a = {gs; s C Sa}. The  the  map 

g ~ Wg C T g G ( =  A )  is a d is tr ibut ion  o f  hor izonta l  spaces for a connect ion  

on the principal  bundle  G --~ G ~'a. 

Proof." ( W g ) u  = Wg~ for u C Ua ,g  C G is equivalent to ~sa?A -1 - - ~  S a, 

which is shown in Proposit ion 2.1. 
The connection defined by the distribution Wg is the canonical  con- 

nec t ion  of the bundle G ~ G s'a. 

2.3 PROPOSITION [ f  T( t ) ,  u < t < v is a curve in G s,a, a curve r ( t )  in 

G is a hor izonta l  l i f t ing o f  7(t) if  and onty i f  F(~) satis~qes the  " t ranspor t  

equa t ion"  
= - - 1 7 - 1 ~ F "  

Proof: Suppose that F(t) lifts 7(t), or F(t).a : 7(t) or (F-1(t)) *aF-l(t) = 

7(@ Then 7 -1 = Fa-IF * and by differentiation we get 

- - 7 - - 1 9 7  - 1  = F a - l r  * + r a - l F  * 
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o r  

_7-1~/= ~a - l r* ( r -1 )*a r  -1 + r a - l~* ( r -~ )*a r  -1 

= (r  + M ) F  -1 

where M = ra-l(r-l )*a. Hence the equation F = - (1/2)7-1+p holds if 

and only if M = F. This in turn is equivalent to 

r - ~  = a- l ( r-~F)*a,  

or F-11p E S a or finally I" E Wr. This completes the proof. 
In the sequel we shall be interested only in solutions F of the t ransport  

equation with F(u) = 1. These satisfy F ( t ) .  7(@ = 7(t) for all u _< t < 
v. This P will be refered to as the "transport  function" of the path  7(t) 
(cs [5], [10], [14], [15], [18]). The transport  function has the following 

fundamental  property: 

2 . 4  P R O P O S I T I O N  If  7(t) is a curve in G ~ with transport function F(t) 
then for g E G the transport function ofg �9 7 = (g-1)*Tg-1 iS g l - ' g  - 1  . 

3. I n d u c e d  C o n n e c t i o n s  

Suppose C is a G-man i fo l d  (G = G(A)) and C --* G ~ is a C ~176 G-  
Banach bundle, i.e., G operates in a compatible C ~ way on C and G s. 

A connection D on C is a transport connection if parallel t ransport  in C 
along a curve a(t) is given by the transport  function of a(t). This means 

that  a section a( t )  of C along a(t),  0 _< t _< 1, is D-paral le l  is and only if 

~(t) = r(t)(~(0)) where r( t)  satisfies I" = -(1/2)a-lar, r(0)= 1. 

3.1 PROPOSITION Transport connections are G-invariant. 

P r o o f i  Use Proposition 2.4. 
We define several t ransport  connections resulting from the systematic 

use of the t ransport  functions in appropriate contexts. 
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T h e  b u n d l e  E 

Let E = G s • H as a G - b u n d l e  wi th  the  ac t ion g(a, x) = ( g . a ,  gx)  

descr ibed above in Section 1 and  define the  connect ion  on E by 

. v  
dt = (r-l(~)v(~))t~=~ 

for any  sect ion v(t)  = (a ( t ) , x ( t ) )  over a(t). 

3.2 PROPOSITION D is a transport connection on E and 

1 1 
n x v  = X ( v )  + -~a- X v .  

The curvature of  D at a 6 G ~ is: 

l [ a - l X ,  a - l y ] "  n ( x , Y )  = - ~  

Next  define a R i e m a n n i a n  met r ic  (( , )) on E as follows. For a 6 G s let 

a = up be the  polar  decomposi t ion  of  a wi th  u = la[ = (a2)1/2 > 0 and  p 

uni tary .  We define on the  fiber Ea = H the  met r ic  

((x, y))o = ( . x , y ) =  < . l / 2x , . 1 /2y ) .  

Define also a 1- form on G s wi th  values in A by se t t ing at  each a 6 Gs: 

1 
S = - - a  - 1  [dp, u] 

2 

where again a = up is the  polar  decomposi t ion  of a. 

3.3 PROPOSITION 

of  E we have: 
For any  tangent  field X on G ~, and any sections x, y 

X ( ( x , y ) )  - ( ( D x x ,  y)) - ((x, D x y ) )  = ( (S (X)x , y ) ) .  
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Proof:  

B u t  

as c la imed .  

D x  Dy  
X((x,y))  - ((--~-,y)) - <(x,--~-)) 

d 1 1 
---- - -~( .x ,y )  - (•(2 + -~a- dx ) , y )  

1 1 - (.x,(~) + ~ a -  &y)) 

= (~x, y) + <.~, y) + <.x, y) 

l (pa- l  ~tx,y) 

1 <~x, a - i f  y) --(-x,Y)- ~ 

1 1 = (zz(p,-1/~- _ a - l ~  _ - y - l S a - l y ) x , y  ) 
2 2 

- - 1 .  V 1 1 v-l(~p + vh)p y---~lg--l p(pz] -1 L p~ ) - -~ 

1 1 - l f j  1 1 

= ~-I~_ _~-Ip~__~ _ _~-i~ 2~ p 2 2 2 

1 -I 1 
: --~2 PP~- ~PP 

1 1 = _ ~ - , p ~  + ~p~ 

1 1 a 1" : - - - - a - - l ( P / ]  - -  /2/)) : - - 7  -- [/~' /2] '  
2 

3.4 COROLLARY Parallel transport on E preserves the metric  on curves 

with p = constant. 

T h e  b u n d l e  M 

We def ine M as t h e  p r o d u c t  b u n d l e  M = G s • V where  V is t h e  

space  of  b o u n d e d  c o n j u g a t e  b i l inear  fo rms  on  H .  T h e  g r o u p  G ac t s  on  V 
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by gg(x,y)  = g ( g - l x , g - l y ) .  If g( t )  is a curve in M on the  curve a(t) we 

define 
__ D u  v )  - 3 ( u ,  D v  

dt dt 
for any sections u, v in E.  The  right hand  side has the  form 

~(~, v ) + g ( ~ ,  v) + ~(u,  6) 

- ~ ( ~ t , v ) - ~ t 3 ( a - l h u ,  v) 

- g ( u ,  ~)) - 1 -~g(u,a-l av) 

: ~ ( u , v ) - - ~ ( a - l h u ,  v ) - -2~(u ,a - l c t v ) ,  

which obviously depends  only on the  values of u, v at each point  but  not  on 

their  derivatives. This  means  that :  

3.5 PROPOSITION The connection on M is a transport connection with 
covariant derivative 

1 
(Dxg) (u ,v )  -= (X(~))(u ,v)  - l g(a-aXu,  v ) -  -~g(u ,a- lXv)  

T h e  b u n d l e  L = G s x A 

The  elements  b in A can be in terpre ted  as bilinear forms by fl(u, v) = 

(bu, v) and the  connect ion on M induces a connect ion on L = G ~ • A by 

D a  v) v) = 

where fl(u, v) = (au,  v). 

3.6 PROPOSITION The connection on L is a transport connection with 
covariant derivative 

D x a  = X(a)  - ! ( X a - l o  r -Jc g r a - l X ) .  
9 
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The  curvature of  D satisfles: 

4R(X,  Y ) a  = a[a -1 X ,  a - 1  Y] - [Xa -1 , Ya-1]a .  

Proof." The fact that  D is a t ransport  connection on L results from calcu- 

lating for a fixed b 6 A: 

D b ) =  D 1 ~ ( F .  ~ ( ( F -  )*bF -1) 

= _ ( v - 1 ) , b r - X ~ r - x  

1 (aa_ (r_l).br_l + 
2 

1. _ x ( v _ l ) , b r _  ~ + l(F_X),bF_Xa_Xh ~-- - - a a  
2 

- 2 ( h a - l ( F - 1 ) * b p - 1  + (P-X)*bP- la-Xh)  = O. 

3.7 PROPOSITION The section a --~ B a in G ~ x A is parallel. 

Proof." 

3.8 COROLLARY 

Da 1 
dt - h -  ( h a - l a + a a - l h ) = O .  

The  section a --* (a, a) in L is parMlel. 

P r o o f :  Since Ba(x,  Y) = (ax, Y), Ba corresponds to the tautological section 

in G" x A. 
The metric  (( , )) in E defines a Finsler s t ructure on the bundle of 

bilinear forms M = G" x V, as follows. If fl 6 M~ then 

I]fl[la = sup{i f l (x ,y) l ;  ((x,x))a _< 1,((y,y))a <_ 1}. 

With  the interpretat ion of u 6 A as the bilinear form f l(x,  y) = (ux,  y), this 

translates into a Finsler norm on the bundle L = G * x A given explicitly 

by: f o r u E L a  = A ,  
l[7/]la = ] 1 / . / - 1 / 2 u y - 1 / 2 [ I  
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(11 [l=~ operator  norm calculated from ( , >). 
Notice that  if a = vp = t, -1/2 �9 p (z~ > O, p = uni tary)  then the map 

?~ --+ t ] - 1 / 2  " U~  Lp - ~  La 

is an isometry for the norms [[ [[p (=  ][ [[), [[ [[a. In the sequel length of 
curves and related concepts refer to this metric  through the usual definition 

Length(7 ) = / II;/(t)ll~(t)dt. 

The  t a n g e n t  b u n d l e  T G  s 

The set G * is open in the real subspace A s of symmetric  elements of A. 

Hence T G  ~ = G ~ x A s is a subbundle of L = G s x A. Since the covariant 

derivative in L defined by 3.6 produces symmetric  results from symmet-  

ric data,  we can restrict this connection to T G  ~. This is the canonical 

connect ion on G s, with covariant derivative defined by 

D x Y  = X ( Y )  - I ( X a - I y  + Y a - ~ X )  

and parallel t ransport  along a curve a(t)  in G ~ given by the transport  func- 
tion F(t)  of a( t )  ac t ing on tangent  vectors by F ( t ) - X  = (r(t)-l)*xr(t) -1. 
Since the term X a - I y  + Y a - I X  in D x Y  is symmetr ic  in X and Y, the 

connection in T G  ~ is a symmetr ic  connection. Similarly, the curvature of 
T G  ~ is given by 

4 R ( X , Y ) Z  = Z [ a - I X ,  a - I Y ]  - [ X a - I , y a - 1 ] Z .  

The Finsler s t ructure of L = G ~ x A can be restricted to T G  ~. In the 

sequel we will always consider T G  ~ as endowed with the resulting structure 
of Finsler bundle with a t ransport  connection. 

Finally we briefly describe the exponential mapping of this connection. 
Direct computat ion shows that  given a 6 G ~ and X 6 TaG s, the curve 
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7(t )  -- e t X . a ,  where  )~ = - ( 1 ~ 2 ) a - I X ,  is the geodesic wi th  7(0) = a, 

~(0) = X.  Therefore  the  exponent ia l  mapp ing  is 

e x p ,  X = e -~-I  x/2 �9 a. 

This can also be wr i t t en  as expa X = al/2ea-1/2xa-1/2al/2. 

4. T h e  s t r u c t u r e  o f  G ~ 

Let P C G s be the  set of or thogonal  reflections of A, i.e., p �9 P if 

and  only if p* = p = p-1.  We define a f lbrat ion 7r : G s --+ P by set t ing 

Tr(a) = p where  a = up is the  polar  decomposi t ion  of a. As no t iced  in the  

prel iminaries  section, p is a selfadjoint uni tary ,  hence an e lement  of P .  

Given p �9 P we wri te  each u �9 A as a 2 x 2 ma t r i x  

U l l  U12 / 

U ~ \ U21 U22 

w h e r e  ~11 ~--- pttp, Ul2  = p ~ ( Z  - -  p ) ,  U21 -~ (J- - -  p)~p, U22 = ( !  - -  p)~t(~l - -  p ) ,  

for p = (p + 1) /2  the  associated s y m m e t r i c  project ion.  This  decomposes  

the  a lgebra  as A = A0 | A1 where  A0 consists of the  diagonal  e lements  

Ull 0 ) 
U ~ 0 ~22 

and  A1 consists of t he  codiagonal  e lements  

(o 
U ~ 

U21 

= { u ; u p  = - p u } .  Equivalently,  Ao = {u;up = pu), A1 We say tha t  

degree(u)  = 0 for u 6 A0 and  degree(u)  = 1 for u �9 A1. T h e n  A = Ao | A1 

is a Z 2 - g r a d e d  algebra.  

4.1 s PROPOSITION Denote by Gp the/~bers 7 r - l ( p )  oleTr : V s --+ P.  

a) G; = {a e G" n A0;ap > 0} = {.p;~ > 0,~p = p~}. 
s $ b)  The g roup  of all g ff G that preserve the/~ber Gp, i.e., g �9 a 6 Gp 

for each a 6 GSp is G M Ao. 
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P r o o f  o f  a): a G G * N A 0  and ap > 0 imply a = (ap)p is the  polar  

decompos t ion  of a. 
S P r o o f  o f  b):  Let g C G c o m m u t e w i t h p .  T h e n  for any a = u p C  G o we 

have g .  a = (g -1 )*upg-1 .  T h e n  g .  a is in no (as a p roduc t  of degree zero 

elements)  and  it is symmetr ic .  Also (g. a)p = (g -1 )*ug-1  > 0 so tha t  by a) 
s we get g. a G G~. Conversely, assume tha t  g G G acts on G o. T h e n  for each 

u > 0 wi th  up = pu, there  exists u' > 0 wi th  u'p = pu' and g.  (up) = u'p. 

Decompos ing  g-1 = h0 + hi  wi th  h0 C A0 and hi G A1 we get 

u 'p  = g . (up)  = (h~ + h~)up(ho  + h , )  

= (h~ + h ~ ) u ( h o  - h~)p,  

so tha t  after cancelling p and compar ing  te rms  of the  same degree we get 

h~uho - h~uhl  = u' h~uhl  - h~uho = O. 

Taking u = 1 it follows tha t  h~ho = v' + h~hl > 0 and  h0 is invertible. But  

the  equali ty h~vhl  = h~vho can not  hold for all u > 0 c o m m u t i n g  wi th  p 

unless hi = 0. In fact consider the  example  

(0 0) 
v =  /3 

and write  

h0 = ( hll 
\ 0 

0 ) h l :  ( 0 h12 ) 
h22 h21 0 " 

T h e n  f rom h~vhl  = h~uho we get 

h~101h12 = h~1/3h22 

and since we can take a,/3 > 0 arbi t rary  real numbers ,  we get h~1h12 = 0 

and h~lh22 = 0. Cancell ing h~l and h22 we conclude tha t  h12 = 0, h21 = 0 
and  therefore h = 0. This  means  tha t  g-1 (whence g) has degree 0 and the  
proof  is complete.  
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The restr ict ion to P of the  bundle  T G  ~ splits as a sum T G  ~ ]p = T P |  

where the  "normal"  bundle  N is defined by Np = {x 6 TpG~;xp = px} .  

4.2 THEOREM L e t  "z : N --~ G ~ be the restriction t o  N of  the exponen-  

t im mapp ing  o f  G s, so tha t  E(p, X)  = e-pX/2 .p. Then E is a di f feomorphism 

satis fying E(Np) = G s p" 

P r o o f :  The  inverse of Z is given at a = vp by ~ . - l (a )  = (p, p l n v ) .  

We close this section wi th  the  remark  tha t  geodesics in a fiber with  

given endpoints  are unique. This  follows f rom the  fact tha t  posit ive elements  

have unique symmet r ic  logari thms. In fact, if x 6 G~ and H = H+ | H_  

with H i  = {x; px = + x } ,  then  

a+ 0 ) 
a =  0 a _  

can be wr i t ten  in a unique way as a = r �9 p where 

(1 ) - ~ X +  0 

0 7 X _  

and X•  symmetr ic .  So there  is a unique geodesic joining p wi th  a. For 

arbi t rary b, a 6 G~, opera te  first wi th  a convenient g 6 G A A0 to reduce to 

the  case b = p. 

5. Projecting on the base 

The  basic fact of this section is the  following. 

5.1 THEOREM The tangent map  TTr : T G  ~ --+ T P  decreases norms. 

P r o o f i  We want to prove that 

IIT   Xll < IlXll~ 
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for all a E G 8. Let a(t)  be a curve in G 8 and X = &(t). Let p(t) = ~r(a(t)) 
and let F(t) be the transport  function of p(t). Finally define al( t )  = F(t) .  
a(0). Since ~r(a(t)) = ~r(al(t)) (F( t ) is  un i ta ry)we get that  X2 = k(0)-&l(0)  
is tangent to the fiber 7r-~(p(0)). Next calculate at t = 0: 

d 1 
X,  = al = ( r ( t ) .  a(0)) = ~ ( - p ~ a  + ap~). 

Writing at t = 0 the polar decomposition a = up = pu we get 

Then calculate 

IlXll~ = l lu-~Xu--~ II 
1 1 1 

= Ilu-~ x~ u-~ + u -~X~u-~  II 
~___ 1 1 1 �9 

= II ( u - ~ u ~  + u~pu-~)  + u-~X=u-~l l .  

lISTS -1 + S-~TSII > 211TII 

valid for any symmetric invertible operator S and any operator T. This 
reduces the proof of the theorem to the inequality 

Ilu-~Xu--~ II ~ t lu-@xlu-~lI.  

But 
1 1 i 1 1 1 

u-LXu-~ u-LXI u-~ + 

is the decompostion of u - l X u - ~  in degree 1 and degree 0 components 
determined by p(O). This is clear because p# = -/~p and X2 is tangent to 
Gp(0).s Therefore if we write 

1 1 
X l  = ~ ( - p ~ p u  + upp~) = ~(~u + u~). 

Recall the inequality ([4]): 



348 Corach, Porta and Recht 

then  clearly 

(0 ) 
u - ~  X l  v--~ = fl 

(o o) l/--~ X 2 ~ - - ~  = 

ii.--~ x~ , -~  II ~ I1~11 = II ~--~ x~ ~--~ II. 

5.2 THEOREM A geodesic of  length less than 7c contained in P is the 
shortest curve in G s joining its endpoints. 

P r o o f i  Let 7 be the  geodesic in P joining p0 and Pl and  let 5 be any other  

curve joining P0 and Pl- T h e n  51 = 1r(5) is contained in P and according 

to Theorem 5.1, the  length  of 51 does not  exceed the  length  of 6. T h e n  

observing tha t  the  Finsler metr ic  of G s restr icted to P is given by ordinary 

opera tor  norm,  a direct applicat ion of [18] gives the  desired minimal i ty  and 

uniqueness.  

6. G e o d e s i c s  in  a f i be r  

Suppose a(t) ,  0 < t K 1 is a curve in G s with Tr(a(0)) = a(1). 

Denote  p(t) = ~-(a(t)), u(t) = a(t)p(t),  and r ( t )  the  transport funct ion 

of p(t). Next define a(t)  = P- l ( t )a ( t )F( t ) .  Since r ( t )  is unitary, the polar 
decomposi t ion  of a is 

~ = ( r - ' v r ) ( r - l p r ) ,  

8 or 7r(~) = P - l p F  = p(O) for each t. This  means tha t  a is a curve in ap(0). 

Observe tha t  a has the  same endpoints  as a because 

~(o) -- r - a ( o ) . ( o ) r ( o )  = a(O) 

and by the  hypothesis  ~r(a(0)) = a(1) we have p(1) = a(1) and therefore 
~ ( ~ )  = r - l ( ~ ) ~ ( ~ ) r ( ~ )  = r - l ( ~ ) p ( 1 ) r ( ~ )  = p (o )  = p (1 )  = a (~) .  

We claim tha t  

( �82  I1~11~ _< Italia �9 
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First (use Pt  = -t iP,  a = up, etc.): 

a = - r - ' ( -  ~-pt>r + r - ~ ( -  ~-pt)r + r - l a r  

1 1 . = r -  ( f f (pp~ - ~p t )  + a ) r  

= F _  1 pb + i.,pp 
2 

and therefore 

Ilall~ = II(r-l~-l/~r)a(r-l~-l/~r)l l  
llF_1u_112 pi: + i.'p = , - -  u - 1 / = p [ I  

2 
1 

= ~ l l ~ - ~ / ~ ( p  ~ + ~ p > - ~ / = l l  �9 

On the other hand, a = up = pv gives 

1 1 
= ~(Pb + @) + ~ ( t  ~ + u t )  

and then 

But in the matr ix decomposition at each p(/) 

u-I/2(tu+uP)u-~/2 = 5 0 

(because the former commutes with p and the lat ter  anticommutes with p). 
Hence 

implies IlaiIo > II~tl~ �9 This is inequality ( �82 and the claim is proved. 
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This inequali ty shows that :  

6.1 PROPOSITION. For any curve joining a 6 G s with 7r(a), there is a 
shorter curve in the lqber G~(,) with the same endpoints. 

The  following technical  result is needed in the  proof  of T h e o r e m  6.3: 

6.2 LEMMA. Let p be a rank  1 orthogonad projection in the Hitbert 
space H, a : H -~ H positive det~nite, X : H --~ H selfadjoint. Then 

I[pa]/2Xa]/2pll <_ Hpapll HXH- 

Proof: Decompose H -- Ce (~ H 1 where IleH = 1, 
ker(p). T h e n  we have mat r ix  representat ions 

a]/2= ( AB B*)C 

X=(~ 7" o) 

p(e) = e, and  HI = 

where A, ~ are scalars, B E H] and B* : H1 --+ C is the  funct ional  B*(h) = 
(h, B) ,  and  O, C are operators  in H1. Define also a bilinear map  F : H x H  --~ 
C by F(u, v) = (Zu ,  v). T h e n  calculating we find tha t  the  ( t ,1)  ent ry  W]I 
of W = a]/2Xa U2 is F(Ae + B, Ae + B). T h e n  

IIW~[I ~ IIFII IIAe + BIt 2 : IIX[I IIA~ + BII ~ = I[X[I(A 2 + IBI=) �9 

But 

and so 

[ A 2 + B*B 
a = ( d l / 2 )  2 = \ B A  + CB 

AB* + B* C 
BB* + C 2 / 

tlW~lll ~ IIXII Ilal~ll ,  

as claimed. 
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6.3 THEOREM. The  unique geodesic in G~ joining two points a, b �9 G~o 
is the shortest curve in G s joining a and b. 

P r o o f i  We consider  first the  case where  b = p. Let  w(t) ,  0 < t < 1 be a 

curve  joining p and  a, and  7( t )  = e ~ .p ,  0 _< t _< 1, t he  geodesic in G~ 

joining the  same  endpoin ts  where  X = ~(0) �9 TpG~ and  .~ = 1 ~pX. We 

will show t h a t  

Length(w)  >_ Length( ' ) , ) .  

By 6.1 we m a y  assume tha t  w is fully conta ined  in G~. We handle  first the  

case p = 1. 

By changing  the  represen ta t ion  if necessary,  we can find e 6 H wi th  

X e  = h e ,  IIell = i and  = IIXII. Next,  we decompose  H as H = C e O C e  -L 

and  therefore  we can obta in  by compress ion to Ce  two curves 711 and  w u  

defined as the  (1,1) entries of the  mat r ices  of 7 and  w in the  decompos i t ion  

H = C e  @ Ce.  By 6.2 we have Length(w11) _< Length(w) .  Also, 7 1 1 ( t )  _7_ 

(e t ~ .  p) = e tA and  

II+11117H = I~%17~ = I~-~12~-*~12~I = I~I 

so t h a t  

L e n g t h ( 7 1 1 ) =  ]~] = ]IX]] = Length(-) ' ) .  

Since wu(t)  > 0 we can calcula te  

~0 
1 

L e n g t h ( w n )  = U&n(t)]]~u(t)dt 

j[o 1 Iwull2(t)&n(t)wnl/2(t)ldt 

= [d)ll(t)/wn(t)[dt _> Ilog Wll( t ) l~[--I~1 

since w u ( 1 )  = 711(1) ---- e "x, wl l (0 )  = 7 1 1 ( 0 )  = 1. This  shows tha t  7 is 

min imal  in t h e  case p = 1. 
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Consider  next  an arbi t rary p and decompose  H = H+ | H _  where 

H+ = {x; px = i x } .  Then  

) X = 0 X = - T X +  0 
X _  ' 0 + i x _  

and 

Similarly, 

But ,  

e x+ 0 ) 
7 ( t )  = d ~ "p = 0 - e  - * x -  

= ) 

IlXll = IIX+ll or IlXl[ = IIX-II 

and 

so tha t  by choosing the  half  where X keeps its no rm we are (up to sign) in 

the  case p = 1, and  the  proof  is complete.  

To complete  the  proof, operate  with an element  of G n A0 to reduce 

the  general case to b = p. 

7. A n  e x a m p l e  

We consider now the algebra A of linear endomorph i sms  of the  Hilbert 
space C 2 wi th  the  s tandard  inner product .  T h e n  G = GL(2, C) and G 8 

has three connected components  de te rmined  by signature.  Denote  G~ the 

component  consisting of the  positive definite elements  of A. The  level 

manifolds Mh = {a; det(a)  = h} of the  de te rminan t  funct ion  det  : G~ --* 

R + form a smoo th  foliation wi th  three dimensional  leaves. Also the  rays 
Na = {ra ;  r > 0} wi th  a 6 M1, form a one dimensional  foliation and 

{Mh} is t ransversal  to {N,}.  The  leaves Mh are the  orbits of the  act ion 
g.a = (g-1)*ag-1 of the  subgroup SL(2,  C) C GL(2, C) and the  leaves Na 

are the  orbits of the  center {zl  ; z # 0} of GL(2, C). 
Since a curve th rough  a(0) = 1 with det (a( t ) )  = 1 satisfies tr(4(0))  = 

0, by t rans la t ion we have t r (a - l&)  = 0 for all curves in Mh. T h e n  the  
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solution P of the transport  equation I" = - ! a - l a r  is contained in COL(2, C). 
2 

Therefore the canonical connection on TG~ preserves the leaves Mh (in the 

sense that  D x Y  is tangent  to Mh whenever both X and Y are), and these 

leaves are totally geodesic. 
Introduce a Riemannian metric on G~ by (X, Y) ,  = t r ( a - l X a - I Y )  for 

X, Y 6 T~G~. Writing 

(X,Y)a  = tr((a-1/2Xa-1/2)(a-1/2ya-1/2)) 

shows immediately tha t  (X, Y)~ is positive definite. The foliations {Mh} 
and {No } are orthogonal for ( , )  

7.1 PROPOSITION. The canonical connection in TG~ is the Levi-Civita 
connection of the Riemann metric t r ( a - l X a - l y )  and GL(2, C) acts iso- 
metrically on G~. 

Proof." We already observed that  the canonical connection is symmetric.  

Using 3.6 one verifies that ,  for X,  Y, Z tangent  fields, it holds that  

Z ( X , Y )  = (DzX,  Y) + (X, DzY)  

and this completes the proof. 

The tangent  space T1M1 to det = 1 at a = 1 is the space of symmetric  

2 x 2 matrices with trace zero. Using 

1 0 ' J =  0 

we can write the arbi t rary element 

i n  T1M1 as  

(~) 

o) ;) 

X=( y z+ix) 
z - ix - y  

X = - i ( x I +  yJ + zK) 
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( x , y , z  are real). Further,  each g 6 SU(2) has the form 

and writing o~ = s + ui ,  ~ = v + w i  we can expand g as 

g = s + u I + v J + w K .  

T h e  c o n d i t i o n  Io~1 = + I~1 ~ = 2 2 + ~2 + v ~ + w = = m i m p l i e s  

g -1 = s - u I -  v J -  w K  = g* 

and therefore 
g �9 X = g X g  -a  . 

This shows that  the action of SU(2) on T1M1 corresponds to the action 
by inner automorphism of quaternions g with [gl = 1 on the 3-space of 

purely imaginary quaternions. Then with elements of SU(2) we can obtain 

any rotat ion of R 3 identified to T1Ma through X ~ ( x , y , z )  as in (~). In 
part icular  any plane in TaMa can be mapped  onto any other plane. 

Observe next that  SU(2) operates isometrically on M1 and leaves 1 

fixed. Hence the action of SU(2 ) l eaves  sectional curvature K ( X , Y )  = 

(R(X,  Y ) Y ,  X )  invariant. This shows that  the sectional curvature in T M a  

is the same for all planes in T M a .  Then operating with g G SL(2,  C)  we 
conclude the M1 has constant sectional curvature. For any pairs X,  Y G 

T I M 1 ,  we can calculate 

4 ( R ( x , Y ) Y , X )  = t r ( (XY)  ~) - t r (X~Y  ~) 

( j2 0) (0 
so that  taking X = 0 - x / ~ / 2  ' Y = v ~ / 2  0 we can 

verify tha t  ( X , X )  - (Y,Y) = 1, ( X , Y )  = 0 and therefore the sectional 

curvature of M1 is 

1 
4 ( t r ( X y ) 2  - t r (X2y2) )  -- 
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More generally (with the same proof!): 

7.2 PROPOSITION. The submanifolds Mh C G~ deigned for each h > 0 
by det = h have constant sectional curvature - 1 / 4 v f h .  

8. A p p e n d i x  

There is an alternative way of obtaining the t ransport  function of 7 

in terms of multiplicative integrals (see [19], [11], [22])  Consider a curve 

7(t),  u _< t _< v in G s. Assuming 7(t) continuous we can find a part i t ion 

n = {u  = 40 _< ~1 _< -. .  _< ~ = v}  wi th  7(~,)  and 7(~i+1) close ~or all i. 
Next define 

PII : (~(~n)--l~(~n--1)) 1/2"'" (~(t2)--1'~(tl)) 1/2('~(/;1)-1"~(~0)) 1/2 

which makes sense because 7(t~+l)-aT(t i)  is close to 1 for all i. Since 

x 1/2 
~[(~i+x)--l'f(~i)) "~[(ti) : ~/(~i+1) 

(proof of Proposit ion 1.1) we get PII �9 7(u) = 7(v)- Taking limits on the 
part i t ion (assume tha t  the curve is smooth) we can define the multiplieative 
integral 

P(v,u) = lira PII H 
and then 

P ( v , u ) ' 7 ( u ) = 7 ( v ) .  

From the definition of P we see also that  for u _< w _< v: 

P(w,v)P(v ,u)  = P(w,u)  

or 
P ( ~ ,  v) = P ( ~ ,  ~)P(~,  ~ ) - '  = p ( ~ ) p ( v ) - ~  
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where  we abbrev ia te  P( t )  = P( t ,  u) with  u the  left endpoint .  

8.1 PROPOSTION Given a smooth  curve 7(t) ,  u < t < v in G s, the 
horizontal lifting; r ( t )  o f  7( t )  with initial condition F(u)  : 1 is given by 
r(~) = P ( t , u ) .  

P r o o f i  We will see t ha t  P ( t , u )  satisfies the  t r anspo r t  equa t ion  F = 

-(1/2)-y-l%r. For tha t  approx imate  the  curve 7( t )  by a piecewise l inear 

curve r ( t )  joining "/'(to), 7 ( t l ) , ' ' ' ,  7 ( tn)  so tha t  be tween  ti and  t{+l we have 

r ( t )  : 7 ( t / )  + s(7( t i+l  - "y(ti) where  s = (t - t i ) / ( t i+ l  - ti). Abbrev ia t e  

a = 7( t / ) ,  b = 7(ti+1).  T h e n  

r = a + s(b - a) = a(l + $a-l(b- a)) 

so t h a t  le t t ing c = a - l ( b  - a) we can wri te  

r : a(1 + sc) 

r - 1 ( b  - a) : (1 + sc ) - I c  

and  
T--I+ = ~(1 + sc ) - l c .  

T h e n  the  func t ion  Ti(t)  = (1 + sc) -1/2 satisfies T ~ ( t ) =  (1 + sc) -1 and  

TiT{ + TiT i  : - ( I  + sc) -1~c( I  + sc) -1 

SO 

TIT-' + T&T7 ~ :-(1 + ~)-~ : -~-'+. 

Therefore 
1 1 

-I+_ T Ti]T[ -2. TiTi -1 =---~T -~[ i, 

Now at t = ti we have Ti = 1 and  then  [Ti, Ti]T[ -2 : 0 there.  Hence if a 

and  b are close then:  
TiT~ -I = 12r-X + - K 
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with K small. Define now for ti < t < ti+l the  function 

Tn( t )  : T i ( t ) T { - l ( t i ) T i - 2 ( t i - 1 )  . . . To(t l  ). 

Taking limits on the part i t ion II we get the function 

and the identities 

Hence T1 satisfies 

T1 = lim Tn 
II 

7 = l im r, 
H 

0 = lira K.  
H 

1 1. TIT71=-~- ~. 

But T1 = P .  In fact, let us calculate: 

Ti(ti+l) -~ (1 ~- c) -1 /2  

= (1 + a - l ( b -  a ) ) - l / 2  
: (1 + a - l b -  1) -1/2 

= ( a - l b ) - l / 2  = (~-1a)1/2.  

Then 

TII(~n) = Tn-l(l~n)Tn-2(tn-1).. .  

-~- (o'(tn)--1~[(~n_1))--l/2 (~(~n_l)--lo'(?~n_2))--l/2 

and therefore T1 = lim TH = P as claimed. 
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