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The Geometry of the Space of Selfadjoint
Invertible Elements in a C*-algebra

GusTAVO CORACH, HORACIO PORTA AND LAZARO RECHT

Let A be a C*-algebra with identity and G*® the set of all selfadjoint
invertible elements of A. This paper is a study of the geometric properties
of the manifold G°. The action of the group G of invertible elements of A
over G*, given by g-a = (¢g71)*ag™!, defines Banach homogeneous spaces
G — G**, where G**° is the orbit of a € G*. It turns out that the G** are
open and closed subsets of G* and the principal bundles G — G**° carry
natural connections. The horizontal lifting of (differentiable) curves v in G*
are controlled by the differential equation I = —274T, which is called here
the transport equation (an alternative approach based on multiplicative
integrals is given in Section 8). Several G—bundles are studied, in particular
the tangent bundle TG*. One relevant point here is that the (left) polar
decomposition a = vp (a € G°, v > 0, p unitary) provides two structures:
first it is easy to see that p is a reflection so that 7(a) = p defines a map
7 : G* — P where P is the set of all p € A such that p* = p~! = p; second
for a tangent vector X € T,G* the norm || X||, = ||[v~Y/2Xv~1/2| defines
a Finsler structure on the bundle T'G®. This bundle carries a canonical
connection determined by the transport equation, with covariant derivative

defined by
DxY = X(¥) - -;:(Xa’lY +YalX)

Research partially supported by CONICET, Argentina and by Funda-
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and parallel transport along a curve v in G* given by the transport function

I’ of 4. Thus TG* is endowed with the resulting structure of Finsler bundle

with a transport connection. The exponential map of this connection is
exp, X = e730 X g =30 XgeraT X,

The restriction of the bundle TG? to P splits as TG*|p = TP @ N where

the “normal bundle” N has over p € P the fiber

N,={XeT,G°: Xp=pX}.

The restriction to N of the exponential map is a diffeomorphism from N
onto G° which preserves the fibers. In Cheeger-Gromoll theory (see [3])
this is expressed by saying that P is a soul of G*.

Returning to the study of the fibration 7 : G° — P we give a de-
scription of the fibers of # and of the group of all ¢ € G that preserve
the fibers. The tangent map T7 : TG® — TP decreases norms in the
sense that ||[(T,7)X|| < || X|l. (X € T,G*). This theorem is based on the
inequality ||ST'S™! + S™ITS|| > 2||T) valid for bounded linear operators
S,T on a Hilbert space with S selfadjoint and invertible [4]. The main
result of this paper is that given two points in the same fiber G} there is
a unique geodesic fully contained in G} joining them, which is the shortest
curve in G* with the same endpoints. A basic tool of the proof is the above
mentioned contraction property of T'r.

In finite dimensional cases, Riemann metrics can be defined on TG*
and we show an example where the canonical connection is the Levi-Civita
connection of such a metric. This paper is part of a series devoted to the
study of the geometry of several reductive homogeneous spaces which ap-
pear naturally in Banach and C*-algebra theories: the space of idempotents
in a C*-algebra ([17], [18], [6]), the space @, of n-tuples of idempotents
decomposing the identity in a Banach algebra [5], the space of relatively
regular elements in a Banach algebra [8]. The subset At of G*® of all posi-
tive invertible elements of A is also considered in [T], where it is shown that
the well-known Segal’s inequality (see [21]) |[eXFY)] < ||e(X/DeY £(X/2))|,
where X,Y are selfadjoint elements of A, is equivalent to the property that
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the exponential map of A1 increases distances, a property which At shares
with Riemannian manifolds with nonpositive curvature. The geometry of
some Hilbert homogeneous spaces has been previously studied by P. de la
Harpe ([12], [13]) and Finsler structure of some groups of operators on a
Hilbert space has been studied by Atkin ([1], [2]) who proves some results
on uniqueness and minimality of geodesics. The transport equation of @,
has been independently found by Daleckii and Kato (see [9], [14] and also
[13], [10]); its geometric meaning, however, was first established in [5]. In
the case n = 2, 3 can be identified with the space of all the reflections and
its transport equation takes the same form as that of G°, a phenomenon
which will be studied in a forthcoming paper.

1. Preliminaries

Let A be a C*-algebra with 1 represented as an operator algebra in a
Hilbert space H. Also denote by G = G(A) the group of invertible elements
of A and G° = G*(A) the space of invertible selfadjoint elements of G. For
each a € G° there is a form B® defined on H by B%(z,y) = {az,y). The
B?%’s are hermitian non-degenerate bilinear forms. The B%-adjoint of u € A
is u® = a~lu*a. Hence the unitary group U? of B? consists of the u € G
with the equivalent properties u™!=a 'u*a or (v*) lau!=a.

In order to study the natural geometry of G* we introduce the following

action of G on G*:
1

g-a=(g"")ag™".
This action fits into the following picture: consider E = G* x H as a
product bundle over G° with fiber E, = H over a € G°. Then E is a
pseudo—Riemannian bundle when each fiber E, is provided with the form
Be.
E can also be considered as a G-bundle with the action

g(a,z) = (g - a,g7).

It is clear that this action is isometric on fibers (because BY%(gz,gy) =
B%(z,y)) and that the isotropy group of a € G* for the action ¢ - a is the
unitary group U? of the form B®.
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Using BY9%(gz,gy) = B*(z,y) with ¢ = o(b) the geometric interpreta-
tion interpretation of o is that o(b) an isometry from E, = (H, B*) onto
Ey = (H, BY).

In the sequel we denote G*°® the orbit {g-a;g € G} of a.

1.1 PROPOSITION The orbits G** are open and closed in G* and for
each a € G°, the map
GG, g—oyg-a

is a smooth principal bundle with group U*®.

Proof: It suffices to show that G — G** has a smooth local section near
a € G*. For b € G° near a put o(b) = (b~ a)!/2. Here b~'a is close to 1
and the square root has the usual meaning (see [20] for example). Routine
calculations show that

o(b)-a = (((57"a) ) a((b1a) /%) < b

so that o is a local section, as needed. This completes the proof of 1.1.

It is readily seen that G* has a functorial character in the category
of C*-algebras and *-homomorphisms. In particular, using Michael’s result
[16] that G(A) — G(B) is a Serre fibration if f : A — B is a surjective
*_homomorphism, Proposition 1.1 implies that f : G*(4) — G*(B) is onto
if and only if every component of G*(B) contains some element of the image
of f. This result is useless in the case when A is the algebra of all bounded
linear operators on a Hilbert space H and B is the quotient of A by the
ideal of all compact operators (the Calkin algebra of H) since in this case
the natural projection G*(A) — G*(B) is onto ([13], p. 197). However in
general there is no way of lifting elements and the criterion above may be
adequate.

We use a = vp as the polar decomposition of @ with v = |a} = (a?)¥/? >
0 and with p unitary. Since |a| and a commute we have

o = (la] )" = ala]™ = el a = p

whence p is a selfadjoint unitary element of A, or p* = p~l=p.
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2. The canonical connection

Denote by U the Lie algebra of U®. It is clear that #/® is a subalgebra
of the Lie algebra G of G and that G can be identified with A (since G is open
in A). In this identification, U* corresponds to the set of B®-antisymmetric
elements of A, i. e.,

Ut ={z € A;a  2%a = —2}.

2.1 PROPOSITION  Let S denote the set of elements s of A which are
B®—symmetric, i. e., with a”'s*a = s. Then A = U* @ S® and the elements
of U® conjugate S° into itself: if s € S* and g € U®, then gsg™! € S°.

Proof: Only the last statement needs a proof:

a Ngsg™)a=(a" (g7 Y a)(a T s*a)(aT g"a) = gsg ™.

2.2 PROPOSITION  For g € G define W, = {¢s;s € S*}. The the map
g — W, C T,G(= A) is a distribution of horizontal spaces for a connection
on the principal bundle G — G*°.

Proof: (W,)u = W,, for u € U% g € G is equivalent to uS%u~! = 5°,
which is shown in Proposition 2.1.

The connection defined by the distribution W, is the canonical con-
nection of the bundle G — G*°.

2.3 PROPOSITION  If4(t), u <t <wisa curve in G>*, a curve ['(t) in
G is a horizontal lifting of v(t) if and only if T'(t) satisfies the “transport

equation”

: 1
I'=—=4714T.
27 7

Proof: Suppose that I'(¢) lifts (t), or I'(#)-a = () or (T71(¢))*al () =
4(t). Then =1 = T'a™'T* and by differentiation we get

_7—1;)/7—1 — ]:'\a—llﬂ* +1‘1a—1f\*
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or
—y 7y =Ta T al ™ + Ta™'T*(I ) el ™
= (0 +M)r*

where M = Ta~1(I'"'I')*a. Hence the equation I' = —(1/2)y~'4T holds if
and only if M = I'. This in turn is equivalent to

r=1f = oY1),

or I~1T" € §° or finally I' € Wr. This completes the proof.

In the sequel we shall be interested only in solutions I' of the transport
equation with I'(u) = 1. These satisfy I'(¢) - y(u) = (¢) for all u < ¢t <
v. This T will be refered to as the “transport function” of the path ~(t)
(cf. [5], [10], [14], [15], [18]). The transport function has the following
fundamental property:

2.4 PROPOSITION  If4(t) is a curve in G*® with transport function I'(t)

then for ¢ € G the transport function of g - v = (g7 )*yg™? is ¢gTg™ L.

3. Induced Connections

Suppose C is a G—manifold (G = G(A)) and C — G* is a C* G-
Banach bundle, ie., G operates in a compatible C* way on C and G°.
A connection D on C is a transport connection if parallel transport in C
along a curve a(t) is given by the transport function of a(¢). This means
that a section o(t) of C along a(t), 0 < t < 1, is D-parallel is and only if
() = T(¢)(5(0)) where () satisfies ' = —(1/2)a'al’, I'(0) = 1.

3.1 PROPOSITION Transport connections are G—-invariant.
Proof: Use Proposition 2.4.

We define several transport connections resulting from the systematic
use of the transport functions in appropriate contexts.
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The bundle F

Let E = G* x H as a G-bundle with the action ¢(a,z) = (¢ - a, gz)
described above in Section 1 and define the connection on E by

Dv d,_ _,
= = 7T @Ov(t)l=o
for any section v(t) = (a(t),z(t)) over a(t).

3.2 PROPOSITION D is a transport connection on E and
I
Dxv = X(v)+ 50 Xv.

The curvature of D at a € G is:

R(X,Y) = —i[a_lX, a”Y].

Next define a Riemannian metric { , }) on E as follows. For a € G* let
a = vp be the polar decomposition of a with v = |a| = (a?)/2 > 0 and p
unitary. We define on the fiber £, = H the metric

(2,900 = (ve,y) = @1/ 22,0 7y).
Define also a 1-form on G* with values in A by setting at each a € G*:
1
S = —§a"1[dp,1/]
where again a = vp is the polar decomposition of a.

3.3 PROPOSITION  For any tangent field X on G*, and any sections z,y
of E we have:

X{(z,y) — (Dxe,y)) — (=, Dxy)) = (S(X)z,y)).
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Proof: D D
X ) — () — (o 22
d

R
= E(ux,y} —{v(& + 5& laa:),y}

- (e, (3 + 5 i)

= (vz,y) + (ve,y) +{ve,7)

1
- (any> - —2_<Ua_1d$ay>

But ) 1
v o= gv T p(py + pir) = Sy (Up + vp)p
1 1 1 1
=v7ly - 5:/_1;);51/ — -2-7/_11'/ — év'li/ — §pp
1 4. 1
=——v v— =
oV PP 5 PP
1 . . n 1.
=—zv v+
oV PP o PP
1

1
= —§a_l(r37/ ~vp) =—5a” [, v,

as claimed.

3.4 COROLLARY  Parallel transport on E preserves the metric on curves
with p = constant.

The bundle M

We define M as the product bundle M = G® x V where V is the
space of bounded conjugate bilinear forms on H. The group G acts on V



Corach, Porta and Recht 341

by gB(z,y) = B(g7 z,¢71y). If B(t) is a curve in M on the curve a(t) we

define
Dp d Du Dv
? = a(ﬁ(uav)) - /8('%7”) - ﬂ(ua —;ﬁ_)

for any sections u,v in E. The right hand side has the form
B(u, v)+B(t,v) + B(u, v)
— Biv) — 5 A(adu,v)
— B(u,v) — %ﬁ(u,a‘ldv)
— Blu,v) — %,B(a_ldu,v) - %ﬁ(u,a—ldv),

which obviously depends only on the values of u,v at each point but not on
their derivatives. This means that:

3.5 PROPOSITION  The connection on M is a transport connection with
covariant derivative

(DxB)(w,v) = (X(B))(wyv) — 58 Xu,0) — 5 B(u,a™ Xv)

The bundle L = G* x A

The elements b in A can be interpreted as bilinear forms by S(u,v) =
{bu,v) and the connection on M induces a connection on L = G* x A by

Do D
(B2, 0) = 22 (u,0)

where f(u,v) = (ou,v).

3.6 PROPOSITION The connection on L is a transport connection with
covariant derivative

1
Dxo=X(o)— = Xa Yo+ oa1X).
2
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The curvature of D satisfies:

4R(X,Y)o = ola™ ' X,a”'Y] - [Xa ', Ya 0.

Proof: The fact that D is a transport connection on L results from calcu-
lating for a fixed b € A:

D - D —=1\kgpp—1
—(T-b)= (7))
— —(F_l)*f*(F—l)*bF—l . (F—-l)*br-—lfr—l
- %(da_l(I“l)*bF_l + (I H*r e ta)
= %aa—l(r—l)*br—l + —12-(F_1)*b1"_1a_1d

1
- §(da_1(I‘"1)*bF_l + (T~ H*rteta) = 0.
3.7 PROPOSITION The section a — B* in G® x A is parallel.

Proof: D 1
d_ta =a-— i(da_la +aa"'a) = 0.

3.8 COROLLARY  The section a — (a,a) in L is parallel.

Proof: Since B%(z,y) = {az,y), B® corresponds to the tautological section
in G® x A.

The metric {{ , )) in E defines a Finsler structure on the bundle of
bilinear forms M = G* x V, as follows. If 5 € M, then

1Blla = sup{|B(z, y)l; (=, 2)}a <1,y ya <1}

With the interpretation of u € A as the bilinear form #(z,y) = {uz,y), this
translates into a Finsler norm on the bundle L = G* x A given explicitly
by: for u € L, = A,

lulla = llv ™ a2
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(|| ||=ordinary operator norm calculated from { , }).

—1/2 |

Notice that if a =vp = v p (v >0, p= unitary) then the map

u— Y2,

u, L,— L,
is an isometry for the norms || ||, (=|| 1), || |le- In the sequel length of
curves and related concepts refer to this metric through the usual definition

Length(y) = / (0o .

The tangent bundle T'G*®

The set G° is open in the real subspace A® of symmetric elements of A.
Hence TG® = G° x A® is a subbundle of L = G* x A. Since the covariant
derivative in L defined by 3.6 produces symmetric results from symmet-
ric data, we can restrict this connection to T'G*®. This is the canonical
connection on G*, with covariant derivative defined by

1
DxY = X(¥) - 5(Xa™'Y + Ya'X)

and parallel transport along a curve a(t) in G* given by the transport func-
tion I'(t) of a(t) acting on tangent vectors by I'(t)- X = (T'(¢)~1)*XT(¢)™1.
Since the term Xa™'Y + Ya™'X in DxY is symmetric in X and Y, the
connection in T'G® is a symmetric connection. Similarly, the curvature of
TG is given by

4R(X,Y)Z = Z[a™' X,a™'Y] - [Xa™,Ya 12

The Finsler structure of L = G* x A can be restricted to TG*. In the
sequel we will always consider TG* as endowed with the resulting structure
of Finsler bundle with a transport connection.

Finally we briefly describe the exponential mapping of this connection.
Direct computation shows that given ¢ € G* and X € T,G*, the curve
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() = etX . q, where X = —(1/2)a”'X, is the geodesic with ¥(0) = a,
%(0) = X. Therefore the exponential mapping is

-1
exp, X = e~ X/2.q,

- . ~-1/2 —-1/2
This can also be written as exp, X = all2ea” "X q1/2,

4. The structure of G*

Let P C G° be the set of orthogonal reflections of A, i.e, p € P if
and only if p* = p = p~'. We define a fibration = : G° — P by setting
7(a) = p where a = vp is the polar decomposition of a. As noticed in the
preliminaries section, p is a selfadjoint unitary, hence an element of P.

Given p € P we write each v € A as a 2 X 2 matrix

11 Ui2
U =
(um u22>
where u1y = pup, u12 = pu(1l — p), ua1 = (1 — p)up, uzz = (1 — pju(l — p),

for p = (p + 1)/2 the associated symmetric projection. This decomposes
the algebra as A = Ag @ A; where Ap consists of the diagonal elements

u = (7551 0
- O U929

and A; consists of the codiagonal elements

u = 0w
- U2t 0 '
Equivalently, A = {u;up = pu}, A1 = {u;up = —pu}. We say that

degree(u) = 0 for u € Ag and degree(u) = 1 for u € A;. Then A = A ® Ay
is a Zo—graded algebra.

4.1 PROPOSITION  Denote by G, the fibers 7Y p) of 7 : G* — P.
a) G5 ={a€ G NAgap>0}={vpv>0vp= pv}.
b) The group of all ¢ € G that preserve the fiber G}, ie., g-a € G}
for each a € G}, is G N Ap.
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Proof of a): a € G° N Ay and ap > 0 imply @ = (ap)p is the polar
decompostion of a.

Proof of b): Let ¢ € G commute with p. Then for any a = vp € G}, we
have g-a = (¢~ !)*vpg~!. Then ¢ a is in Ay (as a product of degree zero
elements) and it is symmetric. Also (g-a)p = (¢7!)*rg~"! > 0 so that by a)
we get g-a € G;. Conversely, assume that ¢ € G acts on G;. Then for each
v > 0 with vp = pv, there exists v' > 0 with v/p = pv' and ¢ (vp) = V'p.
Decomposing ¢~ = hg + hy with hy € A¢ and h; € A; we get

V'p=g-(vp) = (ks + h)va(ho + hy)
= (i + hi)v(ha — h1)p,

so that after cancelling p and comparing terms of the same degree we get
hyvhg — hjvhy =/ hgvhy — hivhy = 0.
Taking v = 1 it follows that hjho = v' + ATh; > 0 and hyg is invertible. But

the equality hfrhy = hivhy can not hold for all » > 0 commuting with p
unless A; = 0. In fact consider the example

_fa 0

V= 0 B
_f{hi1 O {0 Ay
h0_<0 h22> hl—(hzl 0)'

Then from hjrhy = hivhy we get

and write

h;lah12 = h3,Bhas

and since we can take a, 8 > 0 arbitrary real numbers, we get h} b1y = 0
and h3;hgz = 0. Cancelling h}; and Ay we conclude that hyp =0, hg; =0
and therefore h = 0. This means that ¢! (whence g) has degree 0 and the
proof is complete.
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The restriction to P of the bundle T'G* splits as a sum T'G*|p = TP®N
where the “normal” bundle N is defined by N, = {z € T,G*;zp = pz}.

4.2 THEOREM Let Z: N — G° be the restriction to N of the exponen-
tial mapping of G*, so that Z(p, X) = e~?X/2.p. Then E is a diffeomorphism
satisfying E(N,) = G,

Proof: The inverse of Z is given at a = vp by Z7(a) = (p, pInv).

We close this section with the remark that geodesics in a fiber with
given endpoints are unique. This follows from the fact that positive elements
have unique symmetric logarithms. In fact, if z € G} and H = H, @ H_
with Hy = {z; pz = £z}, then

X

can be written in a unique way as a = e” « p where

S
_ 2+
£ (700 )

and X4 symmetric. So there is a unique geodesic joining p with a. For
arbitrary b,a € G, operate first with a convenient g € G A¢ to reduce to
the case b = p.

5. Projecting on the base

The basic fact of this section is the following.

5.1 THEOREM  The tangent map Tr : TG® — TP decreases norms.

Proof: We want to prove that

1Ta X || < [[ X[
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for all a € G*. Let a(t) be a curve in G* and X = a(t). Let p(t) = m(a(?))
and let T'(¢) be the transport function of p(t). Finally define a;() = I'(¢) -
a(0). Since n(a(t)) = w(a1(t)) (T'(t) is unitary) we get that Xo = a(0)—ay(0)
is tangent to the fiber 771(p(0)). Next calculate at ¢ = 0:
. d 1 . .
X1 = a1 = (D) - a0)) = 5(~ppa + app).

Writing at ¢ = 0 the polar decomposition a = vp = pv we get

Xy = %(—pbpv +vppp) = %(/’w +vp).
Then calculate
X o = [lv~* X073
= ||1/_%X11/—% + V—%X21/~%H
= |5 ot ) b
Recall the inequality ([4]):
[STS™ + 57175 > 2||T]|

valid for any symmetric invertible operator S and any operator 7. This
reduces the proof of the theorem to the inequality

I Xv 3| > v xR

But

1., _1 _1 _1 _1 ~1
vV Xy T =0Tt X2 T2 XT3

is the decompostion of ¥"3Xv~% in degree 1 and degree 0 components
determined by p(0). This is clear because pp = —pp and X, is tangent to
Gf(o)' Therefore if we write

(s )
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V—%Xlll—% = (g ﬁO*)

V_%Xgll_%— (a 0)
0 ~

1 1 —1 Y
72 Xv = 2 1Bl = |72 Xav 77,

then clearly

5.2 THEOREM A geodesic of length less than w contained in P is the
shortest curve in G° joining its endpoints.

Proof: Let v be the geodesic in P joining py and p; and let § be any other
curve joining pg and p;. Then §; = 7(é) is contained in P and according
to Theorem 5.1, the length of 8; does not exceed the length of 6. Then
observing that the Finsler metric of G*® restricted to P is given by ordinary
operator norm, a direct application of [18] gives the desired minimality and
uniqueness.

6. Geodesics in a fiber

Suppose a(t), 0 <t < 1isa curve in G* with m(a(0)) = a(1).

Denote p(t) = m(a(t)), v(t) = a(t)p(t), and I'(¢) the transport function
of p(t). Next define o(t) = I'"'(¢)a(t)['(t). Since I'(t) is unitary, the polar
decomposition of o is

o = (I 1WI)(T™1pl),

or 7(0) = I 1pI' = p(0) for each ¢. This means that ¢ is a curve in G0y
Observe that o has the same endpoints as a because

o(0) = T71(0)a(0)I'(0) = a(0)
and by the hypothesis m(a(0)) = a(1) we have p(1) = a(1) and therefore

5(1) = T (Da(D)T(1) = T-{(D)p(LT(1) = p(0) = p(1) = a(1).
We claim that

Q) ol < llalla -



Corach, Porta and Recht 349

First (use pp = —pp, a = vp, etc.):
. -1 1, -1 1 . —1-
6=-T (———2-pp)aI‘ +T a(—ipp)l" + I al
1,1, . N
=T7'(5(ppa - app) + &)L

:P_l——pl);f/pl‘

and therefore

Iolle = [(T1v /2 D)a (D~ w2
T 24 "; 7'/PV—1/2F“

1
= gl i+ oo™
On the other hand, a = vp = pv gives
1o 1,, _
and then
. 1, _ o _ _ . L
llalla = §||V 1/2(1”/ +vp)v 12 4y 1/2(py +vp) 1/2“

But in the matrix decomposition at each p(t)

V—l/?(pl'/+1'/p)y—l/2: (a 0)

0 ~
_ . - 0 p*
1/2 1/2:
vy +vpl (5 0>

(because the former commutes with p and the latter anticommutes with p).

G 2)I=1G 2

implies ||a|ls = ||&]|s - This is inequality () and the claim is proved.

2 ‘
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This inequality shows that:

6.1 PROPOSITION. For any curve joining a € G* with w(a), there is a
shorter curve in the fiber Gfr(a) with the same endpoints.

The following technical result is needed in the proof of Theorem 6.3:

6.2 LEMMA. Let p be a rank 1 orthogonal projection in the Hilbert
space H, a: H — H positive definite, X : H — H selfadjoint. Then

lpa'/? X a'?p|| < ||papl| || X|| -

Proof: Decompose H = Ce @ H; where |le]| = 1, p(e) = e, and Hy =
ker(p). Then we have matrix representations

A B*
12 _
) (B c )
_(&
*= (n 0
where A, are scalars, B € Hy and B* : H; — C is the functional B*(h) =
{h, B}, and 8, C are operators in H. Define also a bilinear map F': HxH —

C by F(u,v) = (Xu,v). Then calculating we find that the (1,1) entry Wy,
of W = a'/?Xa'/? is F(Ae + B, Ae + B). Then

Wil < ||F|l | Ae + B|? = ||X|| || Ae + B||* = | X |I(A* + |B|*) .
But

B ~ \BA+CB BB* + C?
and so

Wl < [ X flandl 5

as claimed.
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6.3 THEOREM. The unique geodesic in G joining two points a,b € G,
is the shortest curve in G° joining a and b.

Proof: We consider first the case where b = p. Let w(t), 0 <t <1bea
curve joining p and a, and y(t) = e!X - p, 0 <t < 1, the geodesic in G;
=~ 1
joining the same endpoints where X = ¥(0) € T,G4 and X = —§pX. We
will show that
Length(w) > Length(vy) .

By 6.1 we may assume that w is fully contained in G;. We handle first the
case p = 1.

By changing the representation if necessary, we can find e € H with
Xe = Me, |le]| =1and |A| = || X||. Next, we decompose H as H = Ce®Ce™
and therefore we can obtain by compression to Ce two curves 7;; and wqq
defined as the (1,1) entries of the matrices of ¥ and w in the decomposition
H = Ce @ Ce. By 6.2 we have Length(w;;) < Length(w). Also, 111(t) =
(eX - p) = e** and '
Fatllne = [ Ay, = le™2ere™2)] = |

so that
Length(v11) = |A| = || X|| = Length(y) .

Since wq1(t) > 0 we can calculate

Leng’ﬁh(wn)=/0 [[@011(Eleons 9y 2t
/0 o2 (#)on (thwry 2(2) |t
~ / (@1 (8) fwnr ()]t > |log wir (]3] = A

since w11(1) = 111(1) = €*, w11(0) = 41:1(0) = 1. This shows that v is
minimal in the case p = 1.
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Consider next an arbitrary p and decompose H = H, & H_ where
Hy ={z; pr = £z}. Then

X: 0 > -i1x, 0
X = = 2
( 0 X_) » X ( 0 +%X-)

and
- X4
== (0" o)
Similarly,
 {wi(?) 0
=" L)
But,
[ X[ = [ X4l or [IX] = |l X-]
and

() ey 2 ot (Ellws o

so that by choosing the half where X keeps its norm we are (up to sign) in
the case p = 1, and the proof is complete.

To complete the proof, operate with an element of G N Ay to reduce
the general case to b= p.

7. An example

We consider now the algebra A of linear endomorphisms of the Hilbert
space C? with the standard inner product. Then G = GL(2,C) and G?*
has three connected components determined by signature. Denote G3 the
component consisting of the positive definite elements of A. The level
manifolds My, = {a;det(a) = h} of the determinant function det : G§ —
R* form a smooth foliation with three dimensional leaves. Also the rays
N, = {ra; r > 0} with a € M, form a one dimensional foliation and
{Mp} is transversal to {N,}. The leaves M} are the orbits of the action
g.a={(g71)*ag™! of the subgroup SL(2,C) C GL(2,C) and the leaves N,
are the orbits of the center {z1; z # 0} of GL(2,C).

Since a curve through a(0) = 1 with det(a(t)) = 1 satisfies tr(a(0)) =
0, by translation we have tr(a='a) = 0 for all curves in Mj;. Then the
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. 1
solution T of the transport equation I' = —§a—1c'z1" is contained in SL(2, C).

Therefore the canonical connection on TG} preserves the leaves M), (in the
sense that DxY is tangent to M} whenever both X and Y are), and these
leaves are totally geodesic.

Introduce a Riemannian metric on G by (X,Y), = tr(a™'Xa™'Y) for
X,Y € 1,G7. Writing

(X,Y), = tr((a—l/ZXa—1/2)(a—l/zya_l/z))

shows immediately that (X,Y), is positive definite. The foliations {M),}
and {N,} are orthogonal for { , ).

7.1 PROPOSITION. The canonical connection in TG} is the Levi-Civita
connection of the Riemann metric tr(a™'Xa™'Y) and GL(2,C) acts iso-
metrically on Gj.

Proof: We already observed that the canonical connection is symmetric.
Using 3.6 one verifies that, for X, Y, Z tangent fields, it holds that

Z(X,Y)=(DzX,Y)+(X,DzY)

and this completes the proof.
The tangent space Ty M to det = 1 at @ = 1 is the space of symmetric
2 x 2 matrices with trace zero. Using

=) G ) =)

we can write the arbitrary element

in Ty M, as

(1) X = ~i(z] +yJ + 2K)
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(z,y, z are real). Further, each g € SU(2) has the form

o=(5 7). lareisr -

and writing & = s + u¢, 8 = v + wi we can expand g¢ as
g=s+ul +vJ+wk.
The condition |a|? + |B]? = s + u? + v? + w? =1 implies
g l=s—ul —vJ] —wK =g"

and therefore
g9-X =gXg™'.

This shows that the action of SU(2) on Ty M; corresponds to the action
by inner automorphism of quaternions g with |[g| = 1 on the 3-space of
purely imaginary quaternions. Then with elements of SU(2) we can obtain
any rotation of R? identified to Ty M; through X — (z,y,z) as in (}). In
particular any plane in 73 M; can be mapped onto any other plane.

Observe next that SU(2) operates isometrically on M; and leaves 1
fixed. Hence the action of SU(2) leaves sectional curvature K(X,Y) =
(R(X,Y)Y, X) invariant. This shows that the sectional curvature in TM;
is the same for all planes in TM;. Then operating with g € SL(2,C) we
conclude the M; has constant sectional curvature. For any pairs X,Y €
Ty M, we can calculate

4(R(X,Y)Y,X) = tr((XY)?) — tr(X?Y?)

_ V2/2 0 0 V2/2
so that taking X = ( 0 V32 )’ Y = V2/2 0 ) we can
verify that (X,X) = (¥,Y) =1, (X,Y) = 0 and therefore the sectional

curvature of Mj is

1 2v2yy L
Z(t;r(XY)2 —tr(X°Y*)) = e
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More generally (with the same proof!):

7.2 PROPOSITION.  The submanifolds M, C G3 defined for each h > 0
by det = h have constant sectional curvature —1/4+/h.

8. Appendix

There is an alternative way of obtaining the transport function of 5
in terms of multiplicative integrals (see [19], [11], [22]). Consider a curve
¥(t), v <t < v in G°. Assuming (%) continuous we can find a partition
O={u=1t <t <--+ <t, =v} with y(¢;) and ¥(¢i41) close for all s.
Next define

1/2

B = (2t () ()7 2)) ()2 (0)

which makes sense because v(t;11)~17(¢;) is close to 1 for all :. Since

(’Y(ti+1)—l’r(ti))l/2 ~y(t:i) = y(tig1)

(proof of Proposition 1.1) we get Py - y(u) = 4(v). Taking limits on the
partition (assume that the curve is smooth) we can define the multiplicative
integral

P(v,u) = liﬂn Py

and then
P(v,u) - y(u) = ~(v).
From the definition of P we see also that for v < w < v:

P(w,v)P(v,u) = P(w,u)

or

P(w,v) = P(w,u)P(v,u)"! = P(w)P(v)™?
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where we abbreviate P(t) = P(t,u) with u the left endpoint.

8.1 PROPOSTION  Given a smooth curve (t), u < t < v in G°, the
horizontal lifting T'(t) of v(t) with initial condition I'(u) = 1 is given by
(1) = P(t,u).

Proof: We will see that P(t,u) satisfies the transport equation I' =
—(1/2)y~*4T. For that approximate the curve 4(t) by a piecewise linear
curve 7(t) joining ¥(%0),¥(t1), - - - ,7(tn) so that between ¢; and ¢;;, we have
r(t) = y(t;) + s(v(ti41 — ¥(t;) where s = (t — ¢;)/(tiy1 — t;). Abbreviate
a = y(t;), b =~(tit1). Then

r=a+s(b—a)=a(l+sa'(b-a))
T =3$(b—a)

so that letting ¢ = a=1(b — a) we can write
7 = a(l + sc)
771 b—a)=(1+sc) e

and
771 = 5(1+sc) e

Then the function Ty(t) = (1 + s¢)~1/? satisfies T?(t) = (1 + s¢)™! and
T.T; + TiT,- =—(1+ sc)_l.éc(l + .sc)_1
S0
T + TTT7% = —(1 + s¢) tée = —77 17,
Therefore 1 1
T.I = —57 M - 5[:r,-,T,—]T,.—?.

Now at t = t; we have T; = 1 and then [T,-,Ti]Ti_2 = ( there. Hence if a
and b are close then: 1
T = -§T-I+ - K
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with K small. Define now for ¢; < ¢ < ¢;41 the function
T[[(t) = Ti(t)Ti_l(ti)Ti_z(ti_l) - To(tl).

Taking limits on the partition II we get the function

T, =limT;
1 11II[11 II
and the identities
¥ = lil'IIn T, 0= lirI[n K.
Hence T satisfies
1

But 77 = P. In fact, let us calculate:

Ti(tig1) = (L + )7/
=(1+ a_l(b - a))—1/2
=(Q+4atb—1)"1/2
— (a_lb)_1/2 — (b_la)1/2.
Then
TH(tn) = Tn—l(tn)Tn—Z(tn-—l) oo

= (0t tnm)) T (Hnm) M 1tn))

and therefore Ty = lim Ty = P as claimed.
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