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e Notion of entanglement measure, the von Neumann entropy, for a general
quantum system t

Partial trace «+— Restriction of a state to a subalgebra

o GNS representation provides an entropy, which in general is not unique 2

Purification «— Irreducible decomposition of GNS space

e Goal: Explain this ambiguity in terms of Tomita-Takesaki theory:

e Emergent gauge symmetry
e Quantum operations

!Balachandran, Govindarajan, de Queiroz, Reyes-Lega (2013)
2Balachandran, de Queiroz, Vaidya (2013)
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Outline

® GNS construction

® Tomita-Takesaki Theory

© Gauge symmetry

© Quantum operation

® Work in progress
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Algebraic approach

e Observable algebra A — C*-algebra.

We will consider only finite dimensional unital algebra. )

e States w : A — C positive linear functional such that

wla) =1, w(@)=w(@), VacdA (1)

We will consider only faithful states, i.e w(a*a) =0 = a=0. )
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GNS construction

(A w) = (Ho, 7w, Qo) J

A has a vector space structure a — |a).

“Inner product” a,b e A

w(a™b) :=(alb), w(a"a)=0=%a=0 (2)

Null space: Gelfand ideal

Ny ={ae A|w(a"a) =0} 3)
o GNS Hilbert space
Ho = A/No,  w(a"b) = ([a]|[b]) (4)
w faithful = N, trivial. J
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GNS construction

GNS construction

e Unique cyclic representation

Tw: A — L(H)
a — me(a) He - Ho (5)
mw(a)[[b]) =  [[ab]).

e Cyclic vector Q) := |[14]), i.e mw(A)|Qw) = Ho such that

w(a) = (Qu|mw(a)|W), Va e A. (6)
w faithful = m,, faithful )
w faithful = |€Q.,) separating for 7, (A)
Tw(a) Q) =0=m,(a) =0, ac A (7)J
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GNS construction

Finite dimensional case

Theorem (Takahashi 2003)

The structure theorem of finite dimensional C*-algebras guarantees the

existence of unique positive integers ni, ..., ny such that
N
A=EPA, A =M, (C), 1<r<N. (8)
r=1

e 14, € A: orthogonal projection onto A,.
e The projector P" := m,(14,) induces a (unique) decomposition of the
GNS space into reducible subrepresentations

N
Ho=EPH, H =PH, (9)
r=1
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GNS construction

Questions

e Each H" can be further decomposed into irreducible subrepresentations
with multiplicity n,, but this is non-unique.

H =PH" (10)
k=1

e Modular theory will characterize this decomposition — It will give rise to a
non-abelian gauge symmetry.
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GNS construction

e Emergent system C: F := L(H.,)

Subsystem A: A~ 7,(A) C F.

Purification A — C

Qo7 (a)|0) = (Lala) = w(a).

e Restriction of a state to a subalgebra is a generalization of partial trace 3.

3Balachandran, Govindarajan, de Queiroz, Reyes-Lega (2013)
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GNS construction

Questions

System B — C complementary to A?

(11)

Modular theory gives the answer. J
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Tomita-Takesaki Theory

Tomita-Takesaki Theory

o Let A C L(H) be a C*-algebra, A’ its commutant
A'={a€ L(H) | ab= ba, Vb€ A} C L(H). (12)

and Q € H a cyclic and separating vector for A and A’.

Q € H cyclic for A < separating for A’ J

A = A" von Neumann algebra. |

Definition

The (antilinear) Tomita operator S : H — H is defined by

5(&Q) = a'qQ, ac A, (13)
S*a'Q) = (a)Q, deA.
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Tomita-Takesaki Theory

Tomita operator and modular objects

Polar decomposition of S

S=JAYV?=n"12] (14)

A (unique) positive selfadjoint operator — the modular operator

o J (unique) antiunitary operator — the modular conjugation
e The vector € is invariant under

SQ=Q, JQA=Q, AQ=Q. (15)
e They satisfy

J=J, F=1, A=5"S. (16)
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GNS construction Tomita-Takesaki Theory Gauge symmetr Quantum operation Work in progress

Modular group

Definition
Let A be the modular operator, we construct a strongly continuous unitary
group (via the functional calculus):

A" =exp (it(InA)), teR. (17)
It is called the modular group and
oi(a) ;== A"aA™", ac A, teR, (18)

gives a one parameter automorphism group on A, the so-called modular
automorphism group.

| A

Tomita-Takesaki Theorem

JAI=A and ot(A)=A, teR (19)
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Tomita-Takesaki Theory

Answer: Complementary system

(20)
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Gauge symmetry

Answer: Irreducible decomposition — Gauge symmetry

(N ¢ A, matrix units

er

e'(jr)el(i) = 6r56jke;£r) (e(r))l_j = e;,'r)7 Z el(ir) = ]l_A,. (21)
i=1

e G = U4: group of unitary elements of A.

G acts on H,, via the representation
U(g) = Jru(g)Jd € mu(A), Vg € G. (22)

U(G) = Uﬂ.w(A)/.
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Gauge symmetry

(r .= =g ef(k) g”*: projectors

HOR = PO, PR = (pP) S € mu(A). (23)
o S P =mu(1a) =P,

H =@HD,  H = {U@)el) |i=1,....n}.  (24)
k=1
N ny
Ho =P PH™ (25)
r=1 k=1
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Gauge symmetry

Gauge group

We regard G as a gauge group for A )

e U(g) € B = its action will remain unnoticed, as far as system A is
concerned.

e F: algebra of fields *

7w(A) = FNU(G) = U(G) (26)

e Superselection sectors: G selects the observable algebra out of the field
algebra.

“Doplicher, Haag, Roberts 1969
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Quantum operation

Sates and quantum operation

Let S(F) be the set of states on F, i.e

S(F) ::{go :F—=C ‘  is a state }
(27)
E{p¢ eF ] o(f) = Tra, (pof), VF € f}.

In particular p > 0 and Try,, (p) =1, i.e, is a density operator.

For each ¢, such p, is unique.
e A—~C

S(J—")‘A - {p € S(F) \ Tro, (pmw(a)) = w(a), a € A}

In particular |, )(Q0| € S(]:)’A-
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ge symmetry Quantum operation \Work in pr

Quantum operation

Let p € S(F)‘ . Then, the quantum operation
A

o 2 Nae=1L (28)
k

En(p) =D _Mphi € S(F)

where the Kraus operators Ay € m,,(A)" for all k.

Trae, (En(p)w(a)) = Tra, (Z A p/\zm(a)>

29
=S TI"HW (ZAZAk pmu(a) ( )

= w(a).
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Quantum operation

Particular case: Projective measurements

A = PR Pk, = 3k (3o)J

05/\—>5g

pe = E5(10)(Q)). (31)

e In particular, the operator p; = p1 , for N =1 was used in (Balachandran,
et al 2013) in order to compute entanglement entropies arising from
restrictions.
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Quantum operation

Entropy

N
pe = > P10 (Qu|P{Y (32)

e pg have (non trivial) eigenvectors PY"¥|Q), with eigenvalues
r,k
Ark(g) = 1P 19) |1 (33)

e g-dependent von Neumann entropy

S(oe) = — 33 M) log Mrkle): (34)

r=1 k=1

The entropy ambiguity is parametrized by the group G. )
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Quantum operation

Restrction to the complementary subsystem

e We have the following relation between the traces

tra(a) = Z nl, Try (mw(a)) = tre, (ay(Imw(a®)J) = tro (a)(mw(a)), (35)

o The faithful state w : A — C have associated a unique positive element
R = R, € A such that w(a) = tra(Ra)

Proposition

Let p € S(}')‘A and JpJ = p. Then, the unique density operator on .,(.A)’
implementing Sg(p)’B is Eg(Jmw(R)J):

Tra, (E5(p)b) = tra(ay (E(Jmu(R)I)B), Vb€ B. (36)

S. Tabban Emergent Gauge Symmetries and Quantum Operations



Quantum operation

Relations between the entropies

Proposition

S(Un(R)J) = 5S(p) = S(R),  S(&(Im(R)J)) = S(pe). (37)
forallg e G=Uax.

o Relative entropy

S(Eg(Imu(R)I)|[Imw(R)J) = S(pe) — S(p1) = AS >0.  (38)
e Then

S(pg) = S(p1) (39) |

In particular

S(psla) = S(p1),  S(pele) = S(ps)- (40) |

e G:gauge group for system A.

Ambiguity in the entropy is carried by system B.



Quantum operation

Example: Bipartite system

e N =1, then A= M,(C), with matrix units e;.
w(a) = tra(Ra),

R = Z Ai€ii, Ai > 0. (41)

The vectors

&) = (W) ?Jes) (42)

provides an orthonormal basis for H,,.

Hilbert space isomorphism

¢:H, — C'C"
&) — (&) =) @)

Tel(MHs) = T=0Td e L(C"®C".

(43)

S. Tabban Emergent Gauge Symmetries and Quantum Operations



Quantum operation

o J(liy® i) =i @ li).
e Ty(a)=a®l, acA
o Jiu(a)J=1,23 acA.

A - AR®1,
B— 1.4 (44)
C 5> A A
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Quantum operation

e For g € G = U(n),

Pele =Y M(g)Elk) (kg™  Ml(g):= Zki\gﬁ- (45)

o |ts restriction to the system B is given by

E(JTu(R)J) = 10 ® (Bge). (46)

S. Tabban Emergent Gauge Symmetries and Quantum Operations



Work in progress

Work in progress: Ethylene molecule C,H4

e Homogeneous spaces
Q=G/H (47)

G: compact Lie group, H: non- abelian finite subgroup
5

The configuration space
Q = SO(3)/H ~ SU(2)/H* (48)

H dihedral group: gauge group

Quantization on T*Q — C*(G x Q): covariance algebra.

Evolution: Casimir <> Modular operator.

Hamiltonian formalism — anomalies.®

SBalachandran, de Queiroz, Vaidya (2013)
®Esteve, 1986
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Work in progress

Conclusions

e We construct a canonical embedding and purification of a quantum
system by means of the GNS construction and we identify a subsystem
decomposition using modular theory.

o We identify a gauge symmetry in the sense of DHR.

o We define a family of entropy-increasing quantum operations induced by
gauge transformations, which leave invariant the original system.

Gauge symmetries <> quantum operations )
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Work in progress
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