Descripción
Poster session
A common application of the Ising model is the study of ferromagnetic materials and their properties. One of said properties, M, the magnetization, can be so easily defined that one may wonder if it is possible to come up with an analytical way of estimating its average value. Using the microcanonical framework of counting the different states the system can be in, this work proves a...
Cellular processes are inherently stochastic, leading to protein level variations and gene expression fluctuations known as noise. Accurately understanding how noise spreads within gene networks is vital for creating gene circuits capable of withstanding noise and for comprehending signal reliability in biological networks. However, current models focusing on noise propagation are often...
In molecular dynamics simulations, thermostats are algorithms known for reproducing the canonical or NVT ensemble on a system of particles, i.e., they reproduce a given temperature in the system. In this work, we review a stochastic thermostat algorithm to reproduce Langevin dynamics according to the equation $\dot{v} = \frac{F}{m} - \gamma v + b\xi$ where $F$ is the total external force,...
Thanks to Einstein’s relation, it is known that two-dimensional diffusion coefficients give the amount of area that a particle under Brownian motion can cover in a determined time. In biological sciences, the diffusion coefficient is a relevant parameter to understand the motion of proteins and molecules providing quantitative insights into the mechanical properties of their microenvironment...
In the realm of statistical physics, this study explores the critical properties of the Ising model on two fractal lattices with different Hausdorff dimensions ($d_H \approx 1.892$ and $d_H \approx 1.595$). By employing the Monte Carlo technique and the Metropolis algorithm, a numerical analysis is presented to determine critical temperature values and correlation length functions....
Jigsaw puzzles are a fascinating pastime that has given many hours of fun to people since its first appearance as an educational tool in geography in 1766. Multiple studies on human behavior, the way in which new knowledge is generated, cognitive styles, among others, have been carried out based on the process in which a puzzle is assembled. However, this work proposes a different approach in...
Fluctuation scaling is an emergent property of complex systems that relates the variance ($\Xi$) and the mean ($\Upsilon$) from an empirical data set in the form $\Xi\sim\Upsilon^{\alpha_{TFS}}$, where the dispersion (fluctuation) of the data has been described in terms of $\Xi$. Taking into account the path integral formalism developed by H. Kleinert, we extend the path integral formalism in...
Hereby we investigate the thermalization of a classical harmonic oscillator starting from a micro-canonical ensemble at energy Eo and finishing in a canonical one at temperature T. We derived analytically that the probabilities $P(Q)$ and $P(−Q)$ of gaining or losing a certain amount of heat $Q$ are related as $P(Q)=\exp(-2Q/kT) P(-Q)$, a result we also verified through molecular dynamics...
Granular media consist of a large number of discrete particles interacting mostly through contact forces that, being dissipative, jeopardizes a classical statistical equilibrium approach based on energy. Instead, two independent equilibrium statistical descriptions have been proposed: the Volume Ensemble and the Force Network Ensemble. Hereby, we propose a procedure to join them into a single...
The proof of Liouville's theorem is important in statistical physics because it establishes a fundamental principle in the theory of dynamical systems and statistical thermodynamics. Liouville's theorem states that in a conservative system (where the total energy is conserved), the volume in phase space occupied by a set of initial conditions is also conserved over time. Starting from three...
The idea of a heat engine proposed by thermodynamics has been a great achievement in the development of classical physics. Based on this concept, mesoscopic heat engines were derived, which operate at micro-scales where thermal fluctuations acquire an important role for modeling the system. In consequence, the system must be modeled following a probabilistic point of view, as suggested by...
Manganites consist of an alloy of manganese oxide ($MnO_3$) in conjunction with a rare-earth element (Lanthanum, Strontium, or Germanium). a particular case is Lanthanum manganite doped with praseodymium (LPCMO). This material holds significant interest due to their magnetic phase transitions occurring below temperatures of 130 K. One of the phenomena observed is the coexistence of...
Verbal fluency tests provide some insight into memory information and retrieval processes. These tests can be represented as a complex network, where the nodes are the words of the fluency test and the links between nodes are the semantic relationship of the words. The complex network formed in this way has been called a “semantic network”. To decipher the search mechanisms used by the brain...
The universe lives on a Gravitational Wave Background (GWB). This GWB is extra energy that is not contained in Einstein's equations, and new models was developed to explain the accelerating expansion of the universe where a GWB is incorporated into Einstein's equations.
In this talk, we study this new paradigm: due to GWB, quantum particles cannot follow geodesics, but rather stochastic...
The formation of traffic bottlenecks in main roads is one of the most common causes of vehicular congestion, having a bigger impact in cities with main roads consisting of few lanes i.e. 2 or 3 lanes. A traffic bottleneck creates a challenge for those drivers who are in the congested lane since they must find a way to change lanes in order to surpass the bottleneck. In this scenario the best...
MnAlCu systems has shown enormous potential as permanent magnets due to their magnetic properties, which is why their characterization study has been carried out. During this research, uniaxial anisotropy was discover using FORC diagrams, which showed different uncentered boomerang shapes that varied depending on the percentage of doping. Furthermore, in order to understand their domains...