24 de abril de 2024 to 3 de mayo de 2024
Universidad de los Andes
America/Bogota timezone

Nearest-Neighbors Spacing Distribution and Log-Time-Scaled Law for 2D-Dyson Gases

No programado
2h
Auditorio - Centro del Japón (Universidad de los Andes)

Auditorio - Centro del Japón

Universidad de los Andes

Calle 18a Nº 0-07 Bloque CJ Bogotá, Colombia
Poster Poster

Ponente

John Fredy Mateus Rubio (Universidad de los Andes)

Descripción

We study the time-evolution from an initial state to an equilibrium state for a 2D-Dyson gas of $N$ charged particles interacting through a 2D-logarithmic Coulomb potential surrounded by a thermal bath at a reduced temperature $\beta=q^2_0/(k_BT)$, with $q_0$ the charge per particle, $T$ the temperature of the bath and $k_B$ the Boltzmann's constant, for $\beta$ in range $[0.1,4.0]$. We analyze the standard deviation of two-particle distances using a standard growth model in logarithmic independent variable, and the spacing distribution between nearest neighbors using a generalized Wigner’s distribution model from which we can know the standard deviation to compare with the initial analysis. We show how a logrithmic-time-law scale governs the time-evolution of this process and prove the validity of Wigner's Surmise for $\beta\geq1.0$ compared with those values used in Gaussian ensembles for times greater than relaxation time $\tau\gg\tau_{\text{Eq}}$, i.e., when the system has reached the thermal equilibrium.

Autores primarios

John Fredy Mateus Rubio (Universidad de los Andes) Gabriel Téllez (Universidad de los Andes)

Materiales de la presentación

Todavía no hay materiales.